Materials Sciences

Materials management deals with the research, development, manufacturing and processing of raw and industrial materials. Key aspects here are biological and medical issues, which play an increasingly important role in this field.

innovations-report offers in-depth articles related to the development and application of materials and the structure and properties of new materials.

Tiny ’nanofingers’ to support sensors, other applications

Future sensors may take the form of microscopic finger-like structures developed at Ohio State University.

Engineers here have found an easy way to carve the surface of inexpensive ceramic material into tiny filaments, creating a platform for devices that detect chemicals in the air. They could also be used to clean up toxic chemicals or gather solar energy, or to form fog-free or self-cleaning surfaces.

Each filament, or “nanofinger,” consists of a single crystal of the com

Copper wire shown to be competitive with fiber optic cable for LANS

Penn State engineers have developed and simulation tested a copper wire transmission scheme for distributing a broadband signal over local area networks (LANS) with a lower average bit error rate than fiber optic cable that is 10 times more expensive.

Dr. Mohsen Kavehrad, the W. L. Weiss professor of electrical engineering and director of the Center for Information and Communications Technology Research who led the study, says, “Using copper wire is much cheaper than fiber optic cable and,

Ultra-thin coating traps DNA on a leash

A coating that tethers DNA to a glass surface and allows the molecule to attach in three different places could make DNA microarrays denser and more affordable, according to Penn State material scientists.

DNA is the basis of enormous efforts in research and development in pharmaceutical and chemical industries across the country. To assay large numbers of DNA fragments, researchers use DNA microarrays – sometimes called biochips or genome chips. Currently, manufacture of these chips is time

Metallic foams

INASMET Technological Centre is working on a project to develop metallic foams. Metal foams and cellular metals have become one the preferred research fields in mew materials in recent times. Given their special structure and extreme lightness, they have enormous potential for use in a never-ending list of applications in diverse industrial sectors.

Metallic foams are, as their name indicates, metallic materials with a porous structure. They can take either the form an open structure of int

New Production Technique May Let Scientists Fine-Tune Strength and Conductivity of Nanotube-Laced Materials

Materials fortified with carbon nanotubes are strongest when the embedded filaments run parallel to each other, but electronic and thermal conductivity are best when the nanotubes are oriented randomly. That the finding from a team of engineers at the University of Pennsylvania who have developed a production technique that permits a finer and more precise dispersion of nanotubes within a material.

The results, which could give scientists the tools to customize nano-tube-laced materials to

Materials could make for super LEDs, solar cells, computer chips

Engineers at Ohio State University have overcome a major barrier in the manufacture of high quality light emitting devices and solar cell materials.

Steven Ringel, professor of electrical engineering, and his colleagues have created special hybrid materials that are virtually defect-free — an important first step for making ultra-efficient electronics in the future.

The same technology could also lead to faster, less expensive computer chips.

Ringel directs Ohio Sta

Page
1 681 682 683 684 685 701