Protein fibers can become electrical wiring

“For the first time, we have created proteins that conduct current extremely well but can also function as semiconductors in transistors, for example,” says Mahiar Hamedi, who developed the technique together with Anna Herland and associates at the Division for Biomolecular and Organic Electronics. The technology is described in his doctoral dissertation.

Last year Mahiar Hamedi made headlines with his invention of conductive textile fibers, which can be used to produce electronic cloth. Now he has scaled down that technology by a factor of about a thousand.

These nano fibers are produced in ordinary test tubes. One component is amyloid fibers, long, stable protein fibers that occur naturally in living organisms and can cause, among other things, nerve disorders in humans and animals. The other component is a conjugated polymer (PEDOT-S), a plastic material that conducts current. When the two are mixed in water, the plastic attaches to the fibers and forms a conductive shell that is merely a handful of atoms thick.

“The beauty of the self-assembly process is the ease under which PEDOT-S binds onto the amyloid fibrils directly in water without the need of any heat, and in a matter of a few minutes” Hamedi writes in his dissertation.

By providing the fibers with charged outgrowths, it is possible to get the molecules themselves to form desired structures. This can be an inexpensive and effective way to create extremely tiny three-dimensional electronic circuits.

Using their nano fibers as a channeling material, Mahiar Hamedi and his associates have constructed fully functional electrochemical transistors that work in the area of 0-0.5 volts.

The dissertation also describes a method for creating nano patterns in conductive plastic. As organic material is beginning to be used in more and more advanced electronic circuits, there is a need to fit a huge number of components in a tiny area. The solution is to form the plastic in a mold with structures that are smaller than the wavelength of visible light – and therefore invisible!

The dissertation Organic electronics on micro and nano fibers – from e-textiles to biomolecular nanoelectronics was publicly defended November 21, 2008. External examiner was George Malliaras, Cornell University, USA.

Contact:
Mahiar Hamedi, cell phone: +46 (0)734-069775, mahiar@ifm.liu.se

Media Contact

Åke Hjelm idw

More Information:

http://www.vr.se

All latest news from the category: Materials Sciences

Materials management deals with the research, development, manufacturing and processing of raw and industrial materials. Key aspects here are biological and medical issues, which play an increasingly important role in this field.

innovations-report offers in-depth articles related to the development and application of materials and the structure and properties of new materials.

Back to home

Comments (0)

Write a comment

Newest articles

Chimpanzee in a tropical forest demonstrating genetic adaptations for survival.

Parallel Paths: Understanding Malaria Resistance in Chimpanzees and Humans

The closest relatives of humans adapt genetically to habitats and infections Survival of the Fittest: Genetic Adaptations Uncovered in Chimpanzees Görlitz, 10.01.2025. Chimpanzees have genetic adaptations that help them survive…

Fiber-rich foods promoting gut health and anti-cancer effects.

You are What You Eat—Stanford Study Links Fiber to Anti-Cancer Gene Modulation

The Fiber Gap: A Growing Concern in American Diets Fiber is well known to be an important part of a healthy diet, yet less than 10% of Americans eat the minimum recommended…

RNA-binding protein RbpB regulating gut microbiota metabolism in Bacteroides thetaiotaomicron.

Trust Your Gut—RNA-Protein Discovery for Better Immunity

HIRI researchers uncover control mechanisms of polysaccharide utilization in Bacteroides thetaiotaomicron. Researchers at the Helmholtz Institute for RNA-based Infection Research (HIRI) and the Julius-Maximilians-Universität (JMU) in Würzburg have identified a…