Ancient Greeks help scientists build environmentally friendly nano devices
Institute of Physics Condensed Matter and Materials Physics Conference (CMMP 2004), University of Warwick 4-7th April
A new generation of materials inspired by the ancient Greeks have been developed by scientists for use in miniaturised devices. The materials are robust, flexible films with perforations on the nano scale and have nano coatings. They are environmentally safe and will enable ultra-fast optoelectronic communication. They are produced by the self-assembly of an intricate 3D jigsaw which is then filled with solid metal or active plastic using the same technology used for plating jewellery. This new technique has been inspired by the lost-wax casting process used by the ancient Greeks for sculpture, but scaled down by a factor of one million.
This new technology will be described by Professor Jeremy Baumberg in the Mott Lecture on Monday 5th April at the Institute of Physics conference CMMP 2004. This four-day conference will take place from Sunday 4th to Wednesday 7th April 2004 at the University of Warwick. Some of the topics being presented include: developments in nanotechnology, snap-shot MRI, organic semiconductor technology, high temperature superconductivity, and progress towards quantum computers.
Professor Baumberg, from Southampton University, said: “These environmentally friendly nano-coatings stay embedded within their operating devices. The nano-perforations produce new electronic, magnetic, optical and bio-sensing properties, applicable to a vast range of new nano-devices in consumer electronics. The complicated 3D nanostructures are impossible to create using conventional micro-technologies, and fill a gap in our ability to build what we need on the nanoscale.
He continued: “Our goal is to allow researchers waking up with a smart idea, to design their new nano-device after breakfast, rapidly nano-prototype it after lunch, and to be testing its nano-performance the same evening. Only in this way will we unlock the full creative potential of our innovative researchers, and find the right ways through the vast maze of possible nano-devices”.
Carefully crafted nano-sized holes in the films also act as pockets for other useful Nano-particles, tethering them in place (“Contained Nano”). The nano-honeycomb structures can provide the equivalent of a scaffolding to assemble nano-devices or sensitive nano-sensors on ultra-small scales. The ultra-high surface area of the nano-films leads to hugely-superior catalytic properties – this is currently being exploited to make cheap greenhouse gas sensors.
Growing magnets inside these nano-honeycombs produces nano-materials whose magnetic properties can be adapted for new generations of magnetic memories on a chip. The nano-scaffolds are being investigated for assembling 3D electronic circuits, and to produce super-capacitors for mobile devices. Similarly the nano-films possess new types of structural colour (such as red- or blue-coloured gold) which are environmentally-safe ways of ornamenting surfaces, as well as enabling new devices for fast optoelectronic communication.
CMMP 2004 is composed of twenty-two symposia including Nanomagnetism and Spintronics, Quantum Fluids and Solids, Semiconductor Optics and Photonics, Applied Superconductivity and Bose-Einstein Condensates. In addition to the presentations in each symposium, there will be a series of plenary lectures by world-renowned researchers. These include Snap Shot MRI by Nobel prize-winner Sir Peter Mansfield, Carbon Nanotube Electronics and Optoelectronics by P Avouris of IBM USA, Single Photon Devices for Quantum Cryptography by A Shields of Toshiba UK, Dynamic Phenomena in Magnets: Investigations over Five Orders of Magnitude by RL Stamps of the University of Western Australia and Liquids, Solids and Elastic Heresy in Between – is there a 2 ½th State of Matter? by M Warner of the University of Cambridge, UK.
Media Contact
More Information:
http://www.iop.org/All latest news from the category: Materials Sciences
Materials management deals with the research, development, manufacturing and processing of raw and industrial materials. Key aspects here are biological and medical issues, which play an increasingly important role in this field.
innovations-report offers in-depth articles related to the development and application of materials and the structure and properties of new materials.
Newest articles
First-of-its-kind study uses remote sensing to monitor plastic debris in rivers and lakes
Remote sensing creates a cost-effective solution to monitoring plastic pollution. A first-of-its-kind study from researchers at the University of Minnesota Twin Cities shows how remote sensing can help monitor and…
Laser-based artificial neuron mimics nerve cell functions at lightning speed
With a processing speed a billion times faster than nature, chip-based laser neuron could help advance AI tasks such as pattern recognition and sequence prediction. Researchers have developed a laser-based…
Optimising the processing of plastic waste
Just one look in the yellow bin reveals a colourful jumble of different types of plastic. However, the purer and more uniform plastic waste is, the easier it is to…