Sticky surfaces turn slippery with the flip of a molecular light switch
The new material, which is described in the June 19 issue of the journal Angewandte Chemie International Edition, could have a wide variety of applications, from a protein filter for biological mixtures to a tiny valve on a “lab-on-a-chip.”
Synthetic polymer membranes are used in a variety of applications based on the science of “bioseparation” — filtering specific proteins from complex liquid mixtures of biological molecules. But proteins often stick to these membranes, clogging up their pores and severely limiting their performance, according to Georges Belfort, the Russell Sage Professor of Chemical Engineering at Rensselaer and corresponding author of the paper.
“We asked ourselves, can one use light to help the proteins hop on and hop off? We have shown that when one changes light, the proteins don't stick as well,” Belfort says.
Operators need an inexpensive way to clean these membranes while they are still in place, rather than periodically removing them from the application environment, Belfort says. But currently the only cleaning options involve expensive chemicals or labor-intensive procedures that result in significant process down-time.
To make the new materials, Belfort and his coworkers attached spiropyran molecules to a widely used industrial polymer, poly(ether sulfone). Spiropyrans are a group of light-switchable organic molecules that exist in a colorless, “closed” form under visible light, but switch to a reddish-purple, “open” form when exposed to UV light. This change leads to an alteration of the new material's polarity, or the chemical structure of its atoms.
In switching from non-polar to polar, the material becomes less attractive to proteins that might stick to its surface, according to Belfort. Exposing the material to UV light is like flipping a molecular switch, causing sticky proteins to detach from the surface and wash away in the liquid, the researchers report.
Not only is the switching mechanism uncomplicated, but so is the patented procedure required to graft spiropyran molecules to poly(ether sulfone). “We used a relatively simple two-step process that could be easily incorporated into a commercial manufacturing process,” Belfort says. “The relative ease of this grafting and switching process suggests many industrial opportunities.”
In addition to bioseparations, Belfort envisions a number of potential applications for the materials, ranging from new membranes for treating polluted water to the targeted release of drugs in the body.
For example, in recent years researchers have developed “lab-on-a-chip” technology for automating laboratory processes on extremely small scales. Belfort notes that the new material could be employed as a surface valve that can be opened and closed by applying light, offering the ability to control liquid flow in a chip's ultra-tiny channels.
And in sensors designed to detect biological agents, the ability to control the polarity of the membrane could help reduce the attachment of unwanted proteins, providing more accurate readings, according to Belfort.
Media Contact
More Information:
http://www.rpi.eduAll latest news from the category: Materials Sciences
Materials management deals with the research, development, manufacturing and processing of raw and industrial materials. Key aspects here are biological and medical issues, which play an increasingly important role in this field.
innovations-report offers in-depth articles related to the development and application of materials and the structure and properties of new materials.
Newest articles
First-of-its-kind study uses remote sensing to monitor plastic debris in rivers and lakes
Remote sensing creates a cost-effective solution to monitoring plastic pollution. A first-of-its-kind study from researchers at the University of Minnesota Twin Cities shows how remote sensing can help monitor and…
Laser-based artificial neuron mimics nerve cell functions at lightning speed
With a processing speed a billion times faster than nature, chip-based laser neuron could help advance AI tasks such as pattern recognition and sequence prediction. Researchers have developed a laser-based…
Optimising the processing of plastic waste
Just one look in the yellow bin reveals a colourful jumble of different types of plastic. However, the purer and more uniform plastic waste is, the easier it is to…