Nanotube ’Peapods’ Exhibit Surprising Electronic Properties
In yet another small step toward building nanoscale devices, scientists have determined that nanotube peapods — minute straws of carbon filled with spherical carbon molecules known as buckyballs — have tunable electronic properties. Published online by the journal Science,the findings suggest that stuffing the straws provides greater control over the electronic states of single-walled carbon nanotubes (SWNT).
Using a low-temperature scanning tunneling microscope, Ali Yazdani of the University of Illinois at Urbana-Champaign and colleagues imaged the physical structure of individual peapods (right). They mapped the motion of electrons within the pipes and, as Yazdani explains, showed “that an ordered array of encapsulated molecules can be used to engineer electron motion inside nanotubes in a predictable way.” Though the harbored buckyballs modify the electronic properties of the nanotube, the atomic structure of the straw remains unchanged.
The researchers also utilized the microscope to move the buckyballs, which allowed them to compare the same section of a SWNT when it was filled and unfilled. “The encapsulated balls have a much stronger effect on the electronic structure of the tube than we had expected,” says study co-author Eugene Mele of the University of Pennsylvania. Indeed, the authors conclude that their calculation not only shows how a peapod’s electronic properties differ from those of its constituent parts, “it also provides possible design rules for proposing hybrid structures having a specific type of electronic functionality.”
Media Contact
More Information:
http://www.sciam.com/news/010402/1.htmlAll latest news from the category: Materials Sciences
Materials management deals with the research, development, manufacturing and processing of raw and industrial materials. Key aspects here are biological and medical issues, which play an increasingly important role in this field.
innovations-report offers in-depth articles related to the development and application of materials and the structure and properties of new materials.
Newest articles
NTU and NUS spin-off cutting-edge quantum control technology
AQSolotl’s quantum controller is designed to be adaptable, scalable and cost-efficient. Quantum technology jointly developed at Nanyang Technological University, Singapore (NTU Singapore) and National University of Singapore (NUS) has now…
How Geothermal Energy Shapes Bavaria’s Green Future Through Sustainable Energy
The Bavarian State Ministry of Science and the Arts has extended its funding for the research association “Geothermal Alliance Bavaria,” with the University of Bayreuth (UBT) continuing as a member…
Spintronics memory innovation: A new perpendicular magnetized film
Long gone are the days where all our data could fit on a two-megabyte floppy disk. In today’s information-based society, the increasing volume of information being handled demands that we…