Nanotechnology being used to improve biocompatibility of human prosthetics and implants

As populations of the world age the current trend is that people are not slowing down in their later years. The desire for increased activity among the elderly also means increased demands on medical researchers to come up with better ways to keep them active. In the fields of implants and prosthetics calcium phosphate (CP) coatings on titanium alloy implants are proving their worth in orthopaedic and dental applications.

The most promising form of CP are hydroxyapatite (Ca10(PO4)6(OH)2, HA) coatings used to promote rapid bone remodelling on the titanium alloy implants. It is well known that the microstructure of these coatings significantly influences their mechanical properties and biocompatibility. Understanding the effect of nanostructures within a biocompatible coating could contribute greatly towards improving the effectiveness of these coatings.

In this study by Singaporean researchers, K.A. Khor, H. Li and P. Cheang, from Nanyang Technological University, the nanostructures and in vitro osteoblast behavior of individual CP splats were characterized. The splats were deposited using both plasma spraying and high velocity oxy-fuel (HVOF) onto polished Ti-6Al-4V substrates.

The results showed that the nanostructured HA splats are capable of enhancing the attachment and proliferation of the osteoblast cells. The study also revealed that the dissolution of the Ca/P-rich phases into the culture medium might promote the proliferation/differentiation of the osteoblast cells.

Media Contact

Dr. Ian Birkby EurekAlert!

All latest news from the category: Materials Sciences

Materials management deals with the research, development, manufacturing and processing of raw and industrial materials. Key aspects here are biological and medical issues, which play an increasingly important role in this field.

innovations-report offers in-depth articles related to the development and application of materials and the structure and properties of new materials.

Back to home

Comments (0)

Write a comment

Newest articles

High-performance cerium oxide-based thermal switch for efficient heat flow control and sustainable energy systems.

Durable, Efficient, Sustainable: The Rise of Cerium Oxide Thermal Switches

Groundbreaking cerium oxide-based thermal switches achieve remarkable performance, transforming heat flow control with sustainable and efficient technology. Cerium Oxide-Based Thermal Switches Revolutionize Heat Flow Control Thermal switches, which electrically control…

Industrial robots lowering CO2 emissions in manufacturing for sustainable global trade.

How Industrial Robots are Reducing Emissions in Global Manufacturing

A new study explores the intersection of industrial automation and environmental sustainability, focusing on the role of industrial robots in reducing the carbon intensity of manufacturing exports. The research demonstrates…

3D-printed bioceramic grafts for craniomaxillofacial bone regeneration, showcasing precision medicine and patient-specific solutions.

Patients Can Heal Through Precise, Personalized Bioceramic Grafts

A recent review is transforming the landscape of craniomaxillofacial bone regeneration with the introduction of personalized bioceramic grafts. This pioneering research explores the fabrication and clinical potential of synthetic grafts…