Report Identifies Materials Technologies That Address Critical Energy and Economic Challenges

They are presented in Linking Transformational Materials and Processing for an Energy Efficient and Low-Carbon Economy: Creating the Vision and Accelerating Realization: Opportunity Analysis for Materials Science and Engineering, released today by The Minerals Metals & Materials Society (TMS).

The report concludes the second phase of a study commissioned by the U.S. Department of Energy (DOE) Industrial Technologies Program (ITP) and funded through Oak Ridge National Laboratory. The study’s findings will be used to formulate a core materials science and engineering (MSE) development portfolio focused on meeting current and future energy challenges, while also opening opportunities for job creation and economic growth.

“The engagement of the MSE community in this work has been a vital component in producing these outputs,” said Warren Hunt, Jr., TMS executive director. “It has been a wonderful example of collaborative excellence and TMS is very pleased to have been able to facilitate the process focused on this important area for the United States and the world.”

The process began in February 2010 when TMS convened the Energy Materials Blue Ribbon Panel, consisting of 21 MSE thought leaders, that was charged with laying the groundwork for a focused evaluation of the highest value opportunities for materials and processing innovation. They met the challenge by producing a “Vision Report” in June 2010 that distilled their findings into four cross-cutting MSE themes: Functional Surface Technology; Higher-Performance Materials for Extreme Environments; Multi-Materials Integration in Energy Systems; and Sustainable Manufacturing of Materials.

Phase II of the project was initiated in September 2010, when Technical Working Groups (TWGs) for each of the MSE themes were assembled to build on the Panel’s broad recommendations by identifying approaches to propel the most promising technologies from the research laboratory into application at scale. Their work encompassed building consensus around key application areas, prioritizing limitations and gaps in materials technologies, providing some quantification of energy and carbon reduction benefits, and offering a preliminary review of research and development needs. The Opportunity Analysis for Materials Science and Engineering summarizes the outcomes of this process.

The bulk of the report is devoted to outlining the prioritized sets of new product and manufacturing process opportunities from each of the four TWGs. A key outcome, however, is the development of a more finely honed list of product and process innovation priorities that crosscut multiple MSE themes and represent the consensus of the TWG participants on the greatest opportunities for performance breakthroughs or radical cost reductions in selected energy application areas. These highest priority innovation areas include:

1) Next-Generation Battery and Fuel Cell Materials and Concepts

Transformational battery technologies for transportation and stationary electrical energy storage will only come about with the development of lower cost materials that are amenable to large scale processing, offer improved performance, and ensure low environmental impact.

2) Breakthrough Thermoelectric Materials

Thermoelectric materials with greatly enhanced conversion efficiency would lead to significant advances in the efficient conversion of waste heat into useful electricity.

3) Next-Generation Structural Metals for Extreme Environments

Structural alloys with greater stability in adverse environments are an important family of product developments that would result in markedly enhanced performance in a number of energy application areas.

4) Catalysts for Fuels and Energy Intensive Processes

Catalysts with higher selectivity and conversion efficiency can improve industrial efficiency and ensure that hydrogen fuel, solar, and carbon management applications are practical. Reducing operating temperatures in chemical production processes would also save significant amounts of energy and associated carbon emissions. In addition, replacement or extension of noble metals used in catalysts with non-noble metals will make resulting products more cost effective.

5) New Paradigm Manufacturing Processes for Metallic and Nonmetallic Materials and Their Composites

By drastically reducing the cost of processing lightweight metal and non-metallic materials and their composites into final products, these high-performing materials can capture far greater use in transportation and manufacturing applications.

6) Surface Treatment Processes for Product Performance and Life Extension

New repair and remanufacturing processes are needed for advanced materials and alloys used in applications designed to enhance energy efficiency and shrink the carbon footprint. Promising techniques include new surface treatment processes that utilize a diffusion process, as well as self-healing materials and “smart” materials with the ability to detect damage.

Integrated computational materials engineering (ICME) was also indentified by the TWGs as a critical cross-cutting tool that can accelerate and enhance the probability of successful development and commercial implementation of the priority product and process innovations.

While the report notes that projects and programs can be immediately structured around the opportunities that the TWGs have identified, it also cautions that specific performance goals and research and development pathways need to be more clearly delineated as a next phase in this process in order to realize the maximum impact of these technologies.

The report further advances a key priority of the DOE/ITP: moving strategic breakthroughs in critical manufacturing and materials technologies from theoretical design to practical application. The DOE views the Opportunity Analysis for Materials Science and Engineering report as a blueprint for action that can speed the nation's progress toward a more energy efficient and low-carbon society while transforming its energy sector.

Download the Full Report and Background Information
The complete report, as well as a summary article and additional background information on the project, can be accessed on the project home page of the TMS Energy website at http://energy.tms.org/initiatives/LTMP.aspx. General information on TMS and high resolution images related to the reports are available in the TMS Energy Press Room at http://energy.tms.org/pressroom.aspx.
About TMS
TMS is a member-driven international professional society dedicated to fostering the exchange of learning and ideas across the entire range of materials science and engineering, from minerals processing and primary metals production, to basic research and the advanced applications of materials. Of particular interest to TMS and its members through its history has been the role of MSE in addressing both short- and long-term energy challenges. Recently, in response to the needs of both society and the MSE professionals it serves, TMS has committed to an even sharper, more strategic focus on materials-enabled energy technology—TMS Energy. The goals of TMS Energy are to provide leadership, facilitation, and resources that generate and support effective energy solutions based on the innovative development and use of materials. The Linking Transformational Materials and Processing for an Energy Efficient and Low-Carbon Economy project is one such effort of the TMS Energy initiative. Additional information on TMS Energy can be found at http://energy.tms.org.

Media Contact

Patti Dobranski Newswise Science News

More Information:

http://www.tms.org

All latest news from the category: Materials Sciences

Materials management deals with the research, development, manufacturing and processing of raw and industrial materials. Key aspects here are biological and medical issues, which play an increasingly important role in this field.

innovations-report offers in-depth articles related to the development and application of materials and the structure and properties of new materials.

Back to home

Comments (0)

Write a comment

Newest articles

Foraminifera absorbing phosphate from ocean water to reduce pollution

Single-Celled Heroes: Foraminifera’s Power to Combat Ocean Phosphate Pollution

So-called foraminifera are found in all the world’s oceans. Now an international study led by the University of Hamburg has shown that the microorganisms, most of which bear shells, absorb…

Humans vs Machines—Who’s Better at Recognizing Speech?

Are humans or machines better at recognizing speech? A new study shows that in noisy conditions, current automatic speech recognition (ASR) systems achieve remarkable accuracy and sometimes even surpass human…

AI system analyzing subtle hand and facial gestures for sign language recognition.

Not Lost in Translation: AI Increases Sign Language Recognition Accuracy

Additional data can help differentiate subtle gestures, hand positions, facial expressions The Complexity of Sign Languages Sign languages have been developed by nations around the world to fit the local…