Researchers develop a solid material with mobile particles that react to the environment

At high temperatures (left) particles move freely in the droplets and lend the material a ruby red color; they agglomerate at lower temperatures (right) and change the material’s color to grey-violet Copyright: INM; free within this press release

How does one get solid particles to move inside a solid material? „You rarely want this to happen in steel, concrete, or plastics, because free motion usually implies a weak spot in the material. In our active nanocomposites, particles are decoupled from the main material inside small compartments, while the rest remains stable,” says Tobias Kraus, Head of the Structure Formation Group at INM.

The research team used a trick: like raisins in a pudding, they distributed small liquid droplets in a polymer. The droplets contained gold nanoparticles that move freely inside each droplet, something they could not do in the solid:

“The particles are now free to either agglomerate or freely move in the entire droplet. The nanocomposite’s color depends on how far the nanoparticles are from each other, it changes from ruby red to grey-violet in our example. The particles can separate again, and the color change is fully reversible,” explains Professor Kraus.

The naked eye can discern neither the droplets nor the nanoparticles inside. The entire composite is translucent; it simply changes its color depending on temperature. “The result is relevant for applications that require transparent materials. We envision coating it onto clear films, for example,” says the material scientist Kraus.

In the current publication, the particles agglomerate depending on temperature. In the future, the scientists want the nanocomposite to react to chemical stimuli. „One may use this to directly visualize high Vitamin C concentrations or toxins, for example,” ponders Kraus.

Your expert at INM:
Prof. Dr. Tobias Kraus
Head Structure Formation
Phone: +49681-9300-389
tobias.kraus@leibniz-inm.de

David Doblas Jiménez, Jonas Hubertus, Thomas Kister, Tobias Kraus, „A translucent nanocomposite with liquid inclusions of a responsive nanoparticle dispersion“; Advanced Materials, https://doi.org/10.1002/adma.201803159

Media Contact

Dr. Carola Jung idw - Informationsdienst Wissenschaft

All latest news from the category: Materials Sciences

Materials management deals with the research, development, manufacturing and processing of raw and industrial materials. Key aspects here are biological and medical issues, which play an increasingly important role in this field.

innovations-report offers in-depth articles related to the development and application of materials and the structure and properties of new materials.

Back to home

Comments (0)

Write a comment

Newest articles

A ‘language’ for ML models to predict nanopore properties

A large number of 2D materials like graphene can have nanopores – small holes formed by missing atoms through which foreign substances can pass. The properties of these nanopores dictate many…

Clinically validated, wearable ultrasound patch

… for continuous blood pressure monitoring. A team of researchers at the University of California San Diego has developed a new and improved wearable ultrasound patch for continuous and noninvasive…

A new puzzle piece for string theory research

Dr. Ksenia Fedosova from the Cluster of Excellence Mathematics Münster, along with an international research team, has proven a conjecture in string theory that physicists had proposed regarding certain equations….