Scientists to discover the unique ductile properties of aluminum
During experiments on high-performance wire arc additive manufacturing researchers produced a metal with unique ductility.
During experiments on high-performance Wire Arc Additive Manufacturing (WAAM) researchers from Peter the Great St.Petersburg Polytechnic University (SPbPU) produced a metal with unique ductility. The ductility is three times higher than specified in the standard. The research results were published in a prestigious journal – “Materials & Design“.
Increase of WAAM productivity led to discovery of unique properties of aluminum. Elongation of specimens during tensile tests of produced metal increased from 12 to 41% compared to its standard properties for the same chemical composition. It means that material will be able to perform longer with the same loading conditions. The developed WAAM technology with higher process rates helps to achieve better material performance.
“In fact, this discovery can change the way of the components design, since now we are able to print high-scale metal object with triple loading capacity. Mechanical properties of metal are always considered with a margin, in our case this margin is several times higher than the specified in standard. This technology could be interesting for many industries, for example for Aerospace sector where we have a partner – S7 R&D Center. The manufactured material will be able to withstand deformations caused by load in Space for a longer time, ” said Oleg Panchenko, Head of the Laboratory of Lightweight Materials and Structures SPbPU.
The solidification rate increase of metal has led to improvement in ductile properties of aluminum. It was achieved by increase of build rate up to 2.2 kg/h. Due to the lack of special equipment for 3D printing (WAAM) in the market initially the utilitarian goal of the research was to increase productivity.
In future, the researchers plan to increase solidification rate even more.
“This will help to trace dependence of material properties on additive manufacturing build rate. We have discovered a way to achieve unique properties and we are willing to move this border of knowledge further”, says Oleg Panchenko.
The scientists also plan studying properties of the produced material under cyclic (fatigue) loading since the published study was based on the analysis performed for static loading. Researchers plan to test the hypothesis that materials with increased ductility show better fatigue performance.
Media Contact
All latest news from the category: Materials Sciences
Materials management deals with the research, development, manufacturing and processing of raw and industrial materials. Key aspects here are biological and medical issues, which play an increasingly important role in this field.
innovations-report offers in-depth articles related to the development and application of materials and the structure and properties of new materials.
Newest articles
How marine worms regenerate lost body parts
The return of cells to a stem cell-like state as the key to regeneration. Many living organisms are able to regenerate damaged or lost tissue, but why some are particularly…
Nano-scale molecular detective
New on-chip device uses exotic light rays in 2D material to detect molecules. Researchers have developed a highly sensitive detector for identifying molecules via their infrared vibrational “fingerprint”. Published in Nature…
Novel CAR T-cell therapy
… demonstrates efficacy and safety in preclinical models of HER2-positive solid tumors. The p95HER2 protein is found expressed in one third of HER2+ tumors, which represent 4% of all tumors….