Segregation Behaviors and Radial Distribution of Dopant Atoms in Silicon Nanowires
Understanding the dynamic behaviors of dopant atoms in Si NWs is the key to realize low-power and high-speed transistors using Si NWs. The segregation behavior of boron (B) and phosphorus (P) atoms in B- and P-doped Si NWs (20 nm in diameter) during thermal oxidation was closely analyzed.
Local vibrational peaks and Fano broadening in optical phonon peaks of B-doped Si NWs were used to detect the behavior of B. Electron spin resonance (ESR) signals from conduction electrons were suitable means for P-doped Si NWs. The radial distribution of P atoms in Si NWs was also investigated to prove the difference in segregation behaviors between of P and B atoms.
B atoms were found to segregate preferentially in the surface oxide layer, whereas P atoms tend to accumulate around the interface inside the Si nanowire. In addition, segregation of B atoms was found to be suppressed by the stress applied to Si NWs.
Details were presented in NANO Letters of American Chemical Society*.
Journal information
Naoki Fukuda, Shinya Ishida, Shigeki Yokono, Ryo Takiguchi, Jun Chen, Takashi Sekiguchi, and Kouichi Murakami, “Segragation Behaviors and Radial Distribution of Dopant Atoms in Silicon Nanowires”, NANO Letters (2011) doi: 10.1021/nl103773e Published online 24 January 2011.
Media Contact
All latest news from the category: Materials Sciences
Materials management deals with the research, development, manufacturing and processing of raw and industrial materials. Key aspects here are biological and medical issues, which play an increasingly important role in this field.
innovations-report offers in-depth articles related to the development and application of materials and the structure and properties of new materials.
Newest articles
Going Steady—Study Reveals North Atlantic’s Gulf Stream Remains Robust
A study by the University of Bern and the Woods Hole Oceanographic Institution in the USA concludes that the ocean circulation in the North Atlantic, which includes the Gulf Stream,…
Single-Celled Heroes: Foraminifera’s Power to Combat Ocean Phosphate Pollution
So-called foraminifera are found in all the world’s oceans. Now an international study led by the University of Hamburg has shown that the microorganisms, most of which bear shells, absorb…
Humans vs Machines—Who’s Better at Recognizing Speech?
Are humans or machines better at recognizing speech? A new study shows that in noisy conditions, current automatic speech recognition (ASR) systems achieve remarkable accuracy and sometimes even surpass human…