Transparent wood-based coating doesn’t fog up

Films made of lignin nanoparticles can have structural coloration or be used as transparent anti-fog coatings.
Credit: Alexander Henn / Aalto University

Coatings made from a wood by-product can keep our glasses and windshields clear.

Researchers have developed a way to turn a waste material from wood into a bio-based transparent film that can be used for anti-fogging or anti-reflective coatings on glasses or vehicle windows. In addition to offering an alternative to the toxic synthetic materials currently used, this approach transforms a waste product into a valuable carbon sink.

Lignin is an abundant waste product in paper and pulp production that is very difficult to process, so it’s usually burned to produce heat. Creating lignin nanoparticles to use for anti-fogging coatings isn’t a new idea, but scientists haven’t yet been able to turn them into transparent films.

‘Optical coatings need to be transparent, but so far, even rather thin lignin particle films have been visible. We knew that small particles appear less turbid, so I wanted to see if I could make invisible particle films by pushing the particle size to a minimum,’ says doctoral researcher Alexander Henn, the study’s lead author. The team used acetylated lignin and developed an improved way to esterify it in a reaction that takes just a few minutes and happens at the relatively low temperature of 60 °C.

‘The lignin particles I made from the acetylated lignin had rather surprising properties, which made the rest of this study very interesting. The possibility to make photonic films, for example, came as a total surprise,’ says Henn.

In addition to anti-fogging and anti-reflective coatings, the new approach can also make coloured films from lignin nanoparticles. By controlling the thickness of the coating and using multi-layer films, the team created materials with different structural colours.

‘Sahar Babaeipour’s efforts were key to controlling the particles’ photonic properties,’ says Henn, adding that researchers Paula Nousiainen and Kristoffer Meinander brought expertise in lignin chemistry and photonic phenomena, respectively, helping the team make sense of their results and use them effectively.

According to the team’s feasibility study, the ease of the reaction and its high yield mean that it could profitably be scaled up to industrial levels. ‘Lignin-based products could be commercially valuable and simultaneously act as carbon sinks, helping relieve the current fossil fuel-dependence and reduce carbon dioxide emissions,’ says Professor Monika Österberg. ‘High value-added applications like this are important to drive lignin valorisation and move us away from using lignin only as a fuel.’

Henn notes the study benefited from having perspectives that took it beyond the lab bench. ‘Teamwork was an important part of making this study impactful. We were able to include the techno-economic analysis with the help of Professor Pekka Oinas and doctoral researcher Susanna Forssell,’ he says.

The study was published in Chemical Engineering and was carried out as part of FinnCERES, the Academy of Finland’s flagship centre for materials bioeconomy research.

Journal: Chemical Engineering Journal
DOI: 10.1016/j.cej.2023.145965

Media Contact

Sedeer el-Showk
Aalto University
sedeer.elshowk@aalto.fi

Expert Contacts

Alexander Henn
Aalto University
karl.henn@aalto.fi
Cell: +358503091259

Monika Österberg
Aalto University
monika.osterberg@aalto.fi
Cell: +358505497218

www.aalto.fi

Media Contact

Sedeer el-Showk
Aalto University

All latest news from the category: Materials Sciences

Materials management deals with the research, development, manufacturing and processing of raw and industrial materials. Key aspects here are biological and medical issues, which play an increasingly important role in this field.

innovations-report offers in-depth articles related to the development and application of materials and the structure and properties of new materials.

Back to home

Comments (0)

Write a comment

Newest articles

NASA: Mystery of life’s handedness deepens

The mystery of why life uses molecules with specific orientations has deepened with a NASA-funded discovery that RNA — a key molecule thought to have potentially held the instructions for…

What are the effects of historic lithium mining on water quality?

Study reveals low levels of common contaminants but high levels of other elements in waters associated with an abandoned lithium mine. Lithium ore and mining waste from a historic lithium…

Quantum-inspired design boosts efficiency of heat-to-electricity conversion

Rice engineers take unconventional route to improving thermophotovoltaic systems. Researchers at Rice University have found a new way to improve a key element of thermophotovoltaic (TPV) systems, which convert heat…