AI finds a way to people’s hearts (literally!)
Unveiling a groundbreaking and accurate AI-based method to classify cardiac function and disease using chest X-Rays.
AI (artificial intelligence) may sound like a cold robotic system, but Osaka Metropolitan University scientists have shown that it can deliver heartwarming—or, more to the point, “heart-warning”—support. They unveiled an innovative use of AI that classifies cardiac functions and pinpoints valvular heart disease with unprecedented accuracy, demonstrating continued progress in merging the fields of medicine and technology to advance patient care. The results will be published in The Lancet Digital Health.
Valvular heart disease, one cause of heart failure, is often diagnosed using echocardiography. This technique, however, requires specialized skills, so there is a corresponding shortage of qualified technicians. Meanwhile, chest radiography is one of the most common tests to identify diseases, primarily of the lungs. Even though the heart is also visible in chest radiographs, little was known heretofore about the ability of chest radiographs to detect cardiac function or disease. Chest radiographs, or chest X-Rays, are performed in many hospitals and very little time is required to conduct them, making them highly accessible and reproducible. Accordingly, the research team led by Dr. Daiju Ueda, from the Department of Diagnostic and Interventional Radiology at the Graduate School of Medicine of Osaka Metropolitan University, reckoned that if cardiac function and disease could be determined from chest radiographs, this test could serve as a supplement to echocardiography.
Dr. Ueda’s team successfully developed a model that utilizes AI to accurately classify cardiac functions and valvular heart diseases from chest radiographs. Since AI trained on a single dataset faces potential bias, leading to low accuracy, the team aimed for multi-institutional data. Accordingly, a total of 22,551 chest radiographs associated with 22,551 echocardiograms were collected from 16,946 patients at four facilities between 2013 and 2021. With the chest radiographs set as input data and the echocardiograms set as output data, the AI model was trained to learn features connecting both datasets.
The AI model was able to categorize precisely six selected types of valvular heart disease, with the Area Under the Curve, or AUC, ranging from 0.83 to 0.92. (AUC is a rating index that indicates the capability of an AI model and uses a value range from 0 to 1, with the closer to 1, the better.) The AUC was 0.92 at a 40% cut-off for detecting left ventricular ejection fraction—an important measure for monitoring cardiac function.
“It took us a very long time to get to these results, but I believe this is significant research,” stated Dr. Ueda. “In addition to improving the efficiency of doctors’ diagnoses, the system might also be used in areas where there are no specialists, in night-time emergencies, and for patients who have difficulty undergoing echocardiography.”
About OMU
Osaka Metropolitan University is the third largest public university in Japan, formed by a merger between Osaka City University and Osaka Prefecture University in 2022. OMU upholds “Convergence of Knowledge” through 11 undergraduate schools, a college, and 15 graduate schools. For more research news, visit https://www.omu.ac.jp/en/ or follow us on Twitter: @OsakaMetUniv_en, or Facebook.
Journal: The Lancet Digital Health
DOI: 10.1016/S2589-7500(23)00107-3
Method of Research: Experimental study
Subject of Research: People
Article Title: Artificial Intelligence-based Model to Classify Cardiac Functions from Chest Radiographs: Multi-institutional Model Development and Validation Study
Article Publication Date: 6-Jul-2023
Media Contact
Ngoc Han Hoang
Osaka Metropolitan University
koho-ipro@ml.omu.ac.jp
Original Source
All latest news from the category: Medical Engineering
The development of medical equipment, products and technical procedures is characterized by high research and development costs in a variety of fields related to the study of human medicine.
innovations-report provides informative and stimulating reports and articles on topics ranging from imaging processes, cell and tissue techniques, optical techniques, implants, orthopedic aids, clinical and medical office equipment, dialysis systems and x-ray/radiation monitoring devices to endoscopy, ultrasound, surgical techniques, and dental materials.
Newest articles
Pinpointing hydrogen isotopes in titanium hydride nanofilms
Although it is the smallest and lightest atom, hydrogen can have a big impact by infiltrating other materials and affecting their properties, such as superconductivity and metal-insulator-transitions. Now, researchers from…
A new way of entangling light and sound
For a wide variety of emerging quantum technologies, such as secure quantum communications and quantum computing, quantum entanglement is a prerequisite. Scientists at the Max-Planck-Institute for the Science of Light…
Telescope for NASA’s Roman Mission complete, delivered to Goddard
NASA’s Nancy Grace Roman Space Telescope is one giant step closer to unlocking the mysteries of the universe. The mission has now received its final major delivery: the Optical Telescope…