AI system detects SARS-CoV-2 on CT scans
DFKI presents method for image-based diagnosis of Corona
Apart from the commonly used PCR tests for the diagnosis of infections with SARS-CoV-2, the Corona virus can also be detected on computed tomography scans. With a new method of automated image recognition, this form of diagnosis can be refined and made more comprehensible for medical staff. In an international cooperation, the DFKI research department Interactive Machine Learning (IML) has developed an interactive AI system that, with a success rate of 92 percent, allows for one of the most precise automatic diagnosis of SARS-CoV-2 using CT scans from a special, publicly available test data set in the world.
In order to detect the Corona virus SARS-CoV-2, there are further methods of diagnosis apart from the globally used PCR tests (Polymerase chain reaction): The infection can also be recognised on computed tomography scans – for which Artificial Intelligence (AI) can be used as well. An AI system can not only filter CT scan of Covid-19 patients from a data set, but also estimate, which areas of the image are of interest.
In a new research project, Prof. Dr.-Ing. Daniel Sonntag, head of the research department Interactive Machine Learning (IML) of the German Research Center for Artificial Intelligence (DFKI), and scientist Duy Nguyen have developed a new prototype for the automatic recognition of SARS-CoV-2 infections on CT scans in cooperation with researchers from Dublin City University (Ireland), University of California, Berkeley (USA), VNUHCM-University of Science (Vietnam) and Max Planck Institute for Informatics.
In a joint paper, of which Mr. Duy Nguyen is the lead author and which is presented in the “Trustworthy AI for Healthcare” workshop of the 35th AAAI Conference on Artificial Intelligence starting today, the researchers present a method to improve the diagnosis and decrease errors by combining different data sources. In a test run with research data, the method achieved a success rate of 92 percent – according to the most recent status, this is the worldwide best result in automated image recognition of infections with SARS-CoV-2 on a CT scan data set. A noteworthy aspect of the method is that, in order to assist medical staff, it visually marks the area on which the diagnosis is based.
Making diagnosis faster, more precise and easier to understand
The image depicted above or found in the cloud (linked below) shows the CT scan of a lung (left) that is analysed via the method of automated image recognition. In addition, patients can be examined for acute or chronic illnesses by using so-called ground glass opacity (GGO). The AI system eventually marks the area upon which its decision is based on a so-called heatmap (right). This visual explanation of the assisting system aims at making the diagnosis more comprehensible and giving further insights to doctors and medical staff: The automatic image recognition with high precision helps estimating the infection and planning the treatment. Especially when shortages in medical supply are possible, this decision aid can be an important advantage.
The paper titled “An attention mechanism using multiple knowledge sources for COVID-19 detection from CT images” can be found on the DFKI website (https://www.dfki.de/web/forschung/projekte-publikationen/publikationen-uebersich…). The next technical extension is already being developed and has been submitted to the International Joint Conference on Artificial Intelligence (IJCAI) 2021 for peer review.
Press material:
At https://cloud.dfki.de/owncloud/index.php/s/p5tsMAQXoNsLpcb you may find the image mentioned in the text. You may use the image for your press publication stating the copyright “DFKI GmbH”. Please also take note of the image caption and copyright note in the additional text document.
Contact
Prof. Dr.-Ing. Daniel Sonntag
German Research Center for Artificial Intelligence (DFKI)
Interactive Machine Learning
Phone: +49 681 85775 5254
Mail: Daniel.Sonntag@dfki.de
Press contact
German Research Center for Artificial Intelligence (DFKI)
Corporate Communications Lower Saxony
Phone: +49 421 17845 4180
Mail: uk-ni@dfki.de
https://www.dfki.de/en/web/news/detail/News/aisystemdetectssars-cov-2onctscans/
Media Contact
All latest news from the category: Medical Engineering
The development of medical equipment, products and technical procedures is characterized by high research and development costs in a variety of fields related to the study of human medicine.
innovations-report provides informative and stimulating reports and articles on topics ranging from imaging processes, cell and tissue techniques, optical techniques, implants, orthopedic aids, clinical and medical office equipment, dialysis systems and x-ray/radiation monitoring devices to endoscopy, ultrasound, surgical techniques, and dental materials.
Newest articles
Innovative 3D printed scaffolds offer new hope for bone healing
Researchers at the Institute for Bioengineering of Catalonia have developed novel 3D printed PLA-CaP scaffolds that promote blood vessel formation, ensuring better healing and regeneration of bone tissue. Bone is…
The surprising role of gut infection in Alzheimer’s disease
ASU- and Banner Alzheimer’s Institute-led study implicates link between a common virus and the disease, which travels from the gut to the brain and may be a target for antiviral…
Molecular gardening: New enzymes discovered for protein modification pruning
How deubiquitinases USP53 and USP54 cleave long polyubiquitin chains and how the former is linked to liver disease in children. Deubiquitinases (DUBs) are enzymes used by cells to trim protein…