Artificial blood vessels could improve heart bypass outcomes

Image of a 3D printed blood vessel.
Credit: Dr Norbert Radasci, School of Engineering, University of Edinburgh

Artificial blood vessels could improve heart bypass outcomes.

3D-printed blood vessels, which closely mimic the properties of human veins, could transform the treatment of cardiovascular diseases.

Strong, flexible, gel-like tubes – created using a novel 3D printing technology – could improve outcomes for heart bypass patients by replacing the human and synthetic veins currently used in surgery to re-route blood flow, experts say.

The development of synthetic vessels could help limit scarring, pain and infection risk associated with the removal of human veins in bypass operations of which some 20,000 are carried out in England each year. The products could also help alleviate the failure of small synthetic grafts, which can be hard to integrate into the body.

In a two-stage process, a team of researchers led by the University of Edinburgh’s School of Engineering used a rotating spindle integrated into a 3D printer to print tubular grafts made from a water-based gel.

They subsequently reinforced the printed graft in a process known as electrospinning, which uses high voltage to draw out very thin nanofibers, coating the artificial blood vessel in biodegradable polyester molecules.

Tests showed the resulting products to be as strong as natural blood vessels.

The 3D graft can be made in thicknesses from 1 to 40 mm in diameter, for a range of applications, and its flexibility means that it could easily be integrated into the human body, the team says.

The next stage of the study will involve researching the use of the blood vessels in animals, in collaboration with the University of Edinburgh’s Roslin Institute, followed by trials in humans.

The research, published in Advanced Materials Technologies, was carried out in collaboration with Heriot-Watt University.

Dr Faraz Fazal, of the University of Edinburgh’s School of Engineering and lead author, said: “Our hybrid technique opens up new and exciting possibilities for the fabrication of tubular constructs in tissue engineering.”

Dr Norbert Radacsi, of the University of Edinburgh’s School of Engineering and principal investigator, said: “The results from our research address a long-standing challenge in the field of vascular tissue engineering – to produce a conduit that has similar biomechanical properties to that of human veins.

“With continued support and collaboration, the vision of improved treatment options for patients with cardiovascular disease could become a reality.”

For further information please contact: Rhona Crawford, Press and PR Office, tel 07876 391498, email Rhona.Crawford@ed.ac.uk

Journal: Advanced Materials Technologies
DOI: 10.1002/admt.202400224
Method of Research: Experimental study
Subject of Research: Lab-produced tissue samples
Article Title: Fabrication of a Compliant Vascular Graft Using Extrusion Printing and Electrospinning Technique
Article Publication Date: 25-Jul-2024

Media Contact

Rhona Crawford
University of Edinburgh
rhona.crawford@ed.ac.uk
Office: 0044-131-650-2246

www.ed.ac.uk

Media Contact

Rhona Crawford
University of Edinburgh

All latest news from the category: Medical Engineering

The development of medical equipment, products and technical procedures is characterized by high research and development costs in a variety of fields related to the study of human medicine.

innovations-report provides informative and stimulating reports and articles on topics ranging from imaging processes, cell and tissue techniques, optical techniques, implants, orthopedic aids, clinical and medical office equipment, dialysis systems and x-ray/radiation monitoring devices to endoscopy, ultrasound, surgical techniques, and dental materials.

Back to home

Comments (0)

Write a comment

Newest articles

NASA: Mystery of life’s handedness deepens

The mystery of why life uses molecules with specific orientations has deepened with a NASA-funded discovery that RNA — a key molecule thought to have potentially held the instructions for…

What are the effects of historic lithium mining on water quality?

Study reveals low levels of common contaminants but high levels of other elements in waters associated with an abandoned lithium mine. Lithium ore and mining waste from a historic lithium…

Quantum-inspired design boosts efficiency of heat-to-electricity conversion

Rice engineers take unconventional route to improving thermophotovoltaic systems. Researchers at Rice University have found a new way to improve a key element of thermophotovoltaic (TPV) systems, which convert heat…