New diagnostic tool could deliver health test results in two minutes
Scientists at Swansea University developing a platform that would use Artificial Intelligence to speed up the process of detecting biomarkers in biofluids have shown that the concept could work. It would mean faster test results for health conditions such as cardiovascular disorders, joint quality, and Alzheimer’s.
This new diagnostic tool could revolutionise the healthcare sector due to the application of a form of artificial intelligence (AI) – machine learning (ML). The implementation of ML has meant it is possible, for the first time, for results to be delivered within minutes.
Biofluids such as synovial fluid, blood plasma, and saliva contain proteins that are an important biomarker for the diagnosis of several health conditions. The specially designed platform has been programmed to detect the concentration of these proteins to assist in diagnosis and monitoring disease progression.
The research proposes that hospital waiting times could be drastically cut and the option for self-screening and self-monitoring is now possible with the potential for at-home diagnostic kits in the future.
Project lead, Dr Francesco Del Giudice, comments:
“Existing technologies for the measurements of macromolecules in biofluids are limited; they require a long turnaround time, or require complex protocols, thus calling for alternative, more suitable, methodologies aimed at such measurements.
“In our research, we looked at whether we could rapidly detect different concentration of macromolecules in solution at different temperatures using only 100 mL of sample (equivalent to 2 drops of blood). The key innovation is the fact of providing a result within 2 minutes, which is a leap forward compared to standard testing that can take several hours.
“What this means for the future is that our proof-of-concept study can be further developed in a tool to help clinicians making decisions on clinical data obtained quickly. We also foresee to develop this further for an at-home-point-of-care self-screening diagnostic platform.”
Dr Claire Barnes, co-author on the work, comments:
“The ability of Artificial Intelligence to drive down the time required to complete various tasks has been demonstrated across a number of disciplines. The advantage of speed offered by the implementation of machine learning allowed us to adjust almost in real-time the experimental parameters to fulfil the requirements of the theoretical model associated with this work.
“Whilst at present we employed machine learning for the purposes of automating our work, the ability to use large amounts of data to imitate aspects of human intelligence and reasoning, allowing a system to learn, predict and make recommendations, is something we would like to explore further and will form the basis of our future work in this area.”
The paper is published in Analytical Chemistry.
Media Contact
Delyth Purchase
Swansea University
d.purchase@swansea.ac.uk
Original Source:
All latest news from the category: Medical Engineering
The development of medical equipment, products and technical procedures is characterized by high research and development costs in a variety of fields related to the study of human medicine.
innovations-report provides informative and stimulating reports and articles on topics ranging from imaging processes, cell and tissue techniques, optical techniques, implants, orthopedic aids, clinical and medical office equipment, dialysis systems and x-ray/radiation monitoring devices to endoscopy, ultrasound, surgical techniques, and dental materials.
Newest articles
First-of-its-kind study uses remote sensing to monitor plastic debris in rivers and lakes
Remote sensing creates a cost-effective solution to monitoring plastic pollution. A first-of-its-kind study from researchers at the University of Minnesota Twin Cities shows how remote sensing can help monitor and…
Laser-based artificial neuron mimics nerve cell functions at lightning speed
With a processing speed a billion times faster than nature, chip-based laser neuron could help advance AI tasks such as pattern recognition and sequence prediction. Researchers have developed a laser-based…
Optimising the processing of plastic waste
Just one look in the yellow bin reveals a colourful jumble of different types of plastic. However, the purer and more uniform plastic waste is, the easier it is to…