Red light therapy for repairing spinal cord injury passes milestone
Patients with spinal cord injury (SCI) could benefit from a future treatment to repair nerve connections using red and near-infrared light.
The method, invented by scientists at the University of Birmingham, U.K. and patented by University of Birmingham Enterprise, involves delivering light directly to the site of the injury.
Their latest research, published today in the journal Bioengineering and Translational Medicine has determined an optimal ‘dose’ for this novel therapeutic approach, and shown that it can deliver significant therapeutic improvements including significant restoration of sensation and movement, and regeneration of damaged nerve cells.
Researchers led by Professor Zubair Ahmed used cell models of SCI to determine the frequency and duration of light required to achieve maximum restoration of function and stimulate nerve cell regrowth.
They found that delivery of red light at a wavelength of 660nm for one minute a day increased cell viability (a measurement of the number of live cells) by 45% over five days of treatment.
Professor Ahmed said: “Excitingly, this aspect of the study showed the effect of 660nm light was both neuroprotective, meaning it improved survival of nerve cells, and neuroregenerative, meaning it stimulated nerve cell growth.”
The researchers also investigated the effect of light therapy in preclinical models of SCI. Here they used two different methods, an implantable device and transcutaneous delivery, where the light source is placed against the skin. Their study showed comparable results for both delivery methods, with a one-minute dose of 660nm light, delivered daily for seven days, resulting in reduced tissue scarring at the site of injury, and significant functional recovery.
The researchers also found significant reductions in both cavities and scarring as well as increases in the levels of proteins associated with nerve cell regeneration and improvements in the connections between cells in the injured area of the spine.
This is the first time transcutaneous and direct delivery of light have been compared in SCI, and the results are a milestone for the researchers, who have already received further funding and are planning to develop an implantable device for use in humans with traumatic SCI, where there are currently no approaches that preserve cells or improve neurological function.
Mr Andrew Stevens, first author of the study and Neurosurgery Registrar explains: “Surgery after spinal cord injury is common, but currently these operations are only aimed at stabilising injuries to the bones of the spine that have been damaged by the trauma. This concept is incredibly exciting as it could offer surgeons the opportunity during the same operation to implant a device which could help protect and repair the spinal cord itself.”
Professor Ahmed continued: “To make light therapy viable for treating SCI in humans an implantable device will be required, to provide a line of sight to the damaged tissue and provide the opportunity for greater accuracy and standardise dosing without impedance due to the thickness of the skin and other tissues surrounding the spinal cord. Photobiomodulation (PBM) may provide a viable therapeutic approach using red or near-infrared light to promote recovery after SCI by mitigating neuroinflammation and preventing neuronal apoptosis. Our current study aimed to optimize PBM dose regimens and develop and validate the efficacy of an invasive PBM delivery paradigm for SCI.”
The research team is now seeking commercial partners or investors to take the next steps towards developing a prototype device that can be taken into first-in-man clinical trials.
About light therapy
In the study, the researchers are using a form of light therapy called photobiomodulation (PBM), which aims to improve healing and reduce inflammation. There is established evidence for its effectiveness in a wide variety of dermatological and oral applications, where metered light dosing can be achieved with precision in direct-to-tissue delivery. For example, PBM is already NICE approved for oral mucositis, where it has been shown to reduce the debilitating ulcers and painful inflammation in the mouth caused by cancer treatments.
In the central nervous system, PBM has been widely studied in preclinical models of Parkinson’s disease, where it has been shown to be safe and effective. In SCI, PBM delivers its therapeutic benefit by mitigating the inflammation that follows injury, in nerve cells, macrophages (immune cells) and astrocytes.
PBM achieves these effects by working principally on mitochondria, which are photoactive and present in every cell in the body where they generate adenosine triphosphate (ATP) which is used within cells as a source of chemical energy. PBM increases the availability of ATP, and this triggers multiple pathways that mitigate apoptosis (cell death), neuronal damage and neuroinflammation and promote neuronal regeneration.
About the implantable device
The implantable device was originally envisaged by neurosurgeon Mr David Davies, who works in the field of traumatic brain injury in the NIHR Surgical Reconstruction and Microbiology Research Centre, and photobiomodulation expert Professor Will Palin from Birmingham’s School of Dentistry. University of Birmingham Enterprise has patented the apparatus and methods for treating traumatic brain injury and traumatic spinal injury, and the research team involved with its development now includes Professor of Neuroscience, Zubair Ahmed and Clinical Research Fellow and Neurosurgery Registrar, Mr Andrew Stevens from Birmingham’s Institute of Inflammation and Ageing.
Photobiomodulation (PBM) may provide a viable therapeutic approach using red or near-infrared light to promote recovery after SCI by mitigating neuroinflammation and preventing neuronal apoptosis. Our current study aimed to optimize PBM dose regimens and develop and validate the efficacy of an invasive PBM delivery paradigm for use in human SCI.
Journal: Bioengineering & Translational Medicine
DOI: 10.1002/btm2.10674
Method of Research Experimental study
Subject of Research: Animals
Article Title: Implantable and transcutaneous photobiomodulation promote neuroregeneration and recovery of lost function after spinal cord injury
Article Publication Date: 25-Apr-2024
COI Statement: Members of the authorship have submitted a patent pending application (DD, MH, WP, ARS and ZA) relating to the invasive delivery of PBM (UK Patent App. No. 2006201.4; US Patent App. 17/922, 157, 2023). There are no other competing interests to declare, including those relating to employment, consultancy, other patents, or products in development.
Media Contact
Ruth Ashton
University of Birmingham
r.c.ashton@bham.ac.uk
Cell: + 44 7989 558041
All latest news from the category: Medical Engineering
The development of medical equipment, products and technical procedures is characterized by high research and development costs in a variety of fields related to the study of human medicine.
innovations-report provides informative and stimulating reports and articles on topics ranging from imaging processes, cell and tissue techniques, optical techniques, implants, orthopedic aids, clinical and medical office equipment, dialysis systems and x-ray/radiation monitoring devices to endoscopy, ultrasound, surgical techniques, and dental materials.
Newest articles
NASA: Mystery of life’s handedness deepens
The mystery of why life uses molecules with specific orientations has deepened with a NASA-funded discovery that RNA — a key molecule thought to have potentially held the instructions for…
What are the effects of historic lithium mining on water quality?
Study reveals low levels of common contaminants but high levels of other elements in waters associated with an abandoned lithium mine. Lithium ore and mining waste from a historic lithium…
Quantum-inspired design boosts efficiency of heat-to-electricity conversion
Rice engineers take unconventional route to improving thermophotovoltaic systems. Researchers at Rice University have found a new way to improve a key element of thermophotovoltaic (TPV) systems, which convert heat…