Technique used commonly in physics finds application in neuroscience
To understand how brain cells release compounds (or transmitters) used when the cells communicate with each other, Vladimir Parpura, associate professor of neuroscience, and Umar Mohideen, professor of physics at UC Riverside, devised a new technique, used commonly in physics, that can be applied now to the study of a wide range of biological processes and interactions.
The researchers, who performed their experiments on brain proteins called SNAREs, published their results in the July issue of Biophysical Journal.
The technique, commonly referred to as Atomic Force Microscopy, uses the deflection of microfabricated membranes of silicon nitride, about 100 times thinner than the human hair, to measure very small forces. Using this technique on rat brain proteins, the researchers were able to measure the bonding between single protein molecules that are involved in the release of the neurotransmitters. They also were able to classify the strength of the molecular interactions (bonding) between 3 of the SNARE proteins that participate in the process.
SNARE proteins are located on vesicles (tiny membrane-encased packets that contain neurotransmitters or enzymes) and the plasma membrane of brain cells. These proteins are thought to play a key role in the final fusion of the synaptic vesicle with the plasma membrane, a process that makes communication between cells possible.
“Our results shed new light on how these proteins are involved in exocytosis – the process by which a biological cell releases substances into its environment,” Parpura said. “We now understand better how these proteins interact at the molecular level and we can apply this to improve our detection of toxins acting on these proteins.”
The researchers used the technique also to develop a sensor for detecting botulinum toxin, responsible for an often fatal type of food poisoning.
“Our sensor is extremely sensitive because it is capable of detecting interactions between two single molecules,” Mohideen said. “As a result, the sample size you need for testing can be extremely small, of the order of a few molecules.”
Media Contact
More Information:
http://www.ucr.eduAll latest news from the category: Medical Engineering
The development of medical equipment, products and technical procedures is characterized by high research and development costs in a variety of fields related to the study of human medicine.
innovations-report provides informative and stimulating reports and articles on topics ranging from imaging processes, cell and tissue techniques, optical techniques, implants, orthopedic aids, clinical and medical office equipment, dialysis systems and x-ray/radiation monitoring devices to endoscopy, ultrasound, surgical techniques, and dental materials.
Newest articles
First-of-its-kind study uses remote sensing to monitor plastic debris in rivers and lakes
Remote sensing creates a cost-effective solution to monitoring plastic pollution. A first-of-its-kind study from researchers at the University of Minnesota Twin Cities shows how remote sensing can help monitor and…
Laser-based artificial neuron mimics nerve cell functions at lightning speed
With a processing speed a billion times faster than nature, chip-based laser neuron could help advance AI tasks such as pattern recognition and sequence prediction. Researchers have developed a laser-based…
Optimising the processing of plastic waste
Just one look in the yellow bin reveals a colourful jumble of different types of plastic. However, the purer and more uniform plastic waste is, the easier it is to…