Tiny, wireless, injectable chips use ultrasound to monitor body processes
Columbia Engineers develop the smallest single-chip system that is a complete functioning electronic circuit; implantable chips visible only in a microscope point the way to developing chips that can be injected into the body with a hypodermic needle.
Widely used to monitor and map biological signals, to support and enhance physiological functions, and to treat diseases, implantable medical devices are transforming healthcare and improving the quality of life for millions of people. Researchers are increasingly interested in designing wireless, miniaturized implantable medical devices for in vivo and in situ physiological monitoring. These devices could be used to monitor physiological conditions, such as temperature, blood pressure, glucose, and respiration for both diagnostic and therapeutic procedures.
To date, conventional implanted electronics have been highly volume-inefficient–they generally require multiple chips, packaging, wires, and external transducers, and batteries are often needed for energy storage. A constant trend in electronics has been tighter integration of electronic components, often moving more and more functions onto the integrated circuit itself.
Researchers at Columbia Engineering report that they have built what they say is the world’s smallest single-chip system, consuming a total volume of less than 0.1 mm3. The system is as small as a dust mite and visible only under a microscope. In order to achieve this, the team used ultrasound to both power and communicate with the device wirelessly. The study was published online May 7 in Science Advances.
“We wanted to see how far we could push the limits on how small a functioning chip we could make,” said the study’s leader Ken Shepard, Lau Family professor of electrical engineering and professor of biomedical engineering. “This is a new idea of ‘chip as system’–this is a chip that alone, with nothing else, is a complete functioning electronic system. This should be revolutionary for developing wireless, miniaturized implantable medical devices that can sense different things, be used in clinical applications, and eventually approved for human use.”
The team also included Elisa Konofagou, Robert and Margaret Hariri Professor of Biomedical engineering and professor of radiology, as well as Stephen A. Lee, PhD student in the Konofagou lab who assisted in the animal studies.
The design was done by doctoral student Chen Shi, who is the first author of the study. Shi’s design is unique in its volumetric efficiency, the amount of function that is contained in a given amount of volume. Traditional RF communications links are not possible for a device this small because the wavelength of the electromagnetic wave is too large relative to the size of the device. Because the wavelengths for ultrasound are much smaller at a given frequency because the speed of sound is so much less than the speed of light, the team used ultrasound to both power and communicate with the device wirelessly. They fabricated the “antenna” for communicating and powering with ultrasound directly on top of the chip.
The chip, which is the entire implantable/injectable mote with no additional packaging, was fabricated at the Taiwan Semiconductor Manufacturing Company with additional process modifications performed in the Columbia Nano Initiative cleanroom and the City University of New York Advanced Science Research Center (ASRC) Nanofabrication Facility.
Shepard commented, “This is a nice example of ‘more than Moore’ technology–we introduced new materials onto standard complementary metal-oxide-semiconductor to provide new function. In this case, we added piezoelectric materials directly onto the integrated circuit to transducer acoustic energy to electrical energy.”
Konofagou added, “Ultrasound is continuing to grow in clinical importance as new tools and techniques become available. This work continues this trend.”
The team’s goal is to develop chips that can be injected into the body with a hypodermic needle and then communicate back out of the body using ultrasound, providing information about something they measure locally. The current devices measure body temperature, but there are many more possibilities the team is working on.
###
About the Study
The study is titled “Application of a sub-0.1-mm3 implantable mote for in vivo real-time wireless temperature sensing.”
Authors are: Chen Shi1, Victoria Andino-Pavlovsky1, Stephen A. Lee2, Tiago Costa1,3, Jeffrey Elloian1, Elisa E. Konofagou2,4, Kenneth L. Shepard1,2
1 Department of Electrical Engineering, Columbia University
2Department of Biomedical Engineering, Columbia University
3Department of Microelectronics, Delft University of Technology, The Netherlands
4Department of Radiology, Columbia University
The study was supported in part by a grant from the W. M. Keck Foundation and by the Defense Advanced Research Projects Agency (DARPA) under Contract HR0011-15-2-0054 and Cooperative Agreement D20AC00004.
Chen Shi and Kenneth L. Shepard are listed as inventors on a provisional patent filed by Columbia University (Patent Application No. 15/911,973). The other authors declare no competing interests.
LINKS:
Paper: https:/
DOI: 10.1126/sciadv.abf6312
http://engineering.
http://advances.
https:/
Columbia Engineering
Columbia Engineering, based in New York City, is one of the top engineering schools in the U.S. and one of the oldest in the nation. Also known as The Fu Foundation School of Engineering and Applied Science, the School expands knowledge and advances technology through the pioneering research of its more than 220 faculty, while educating undergraduate and graduate students in a collaborative environment to become leaders informed by a firm foundation in engineering. The School’s faculty are at the center of the University’s cross-disciplinary research, contributing to the Data Science Institute, Earth Institute, Zuckerman Mind Brain Behavior Institute, Precision Medicine Initiative, and the Columbia Nano Initiative. Guided by its strategic vision, “Columbia Engineering for Humanity,” the School aims to translate ideas into innovations that foster a sustainable, healthy, secure, connected, and creative humanity.
Media Contact
All latest news from the category: Medical Engineering
The development of medical equipment, products and technical procedures is characterized by high research and development costs in a variety of fields related to the study of human medicine.
innovations-report provides informative and stimulating reports and articles on topics ranging from imaging processes, cell and tissue techniques, optical techniques, implants, orthopedic aids, clinical and medical office equipment, dialysis systems and x-ray/radiation monitoring devices to endoscopy, ultrasound, surgical techniques, and dental materials.
Newest articles
Pinpointing hydrogen isotopes in titanium hydride nanofilms
Although it is the smallest and lightest atom, hydrogen can have a big impact by infiltrating other materials and affecting their properties, such as superconductivity and metal-insulator-transitions. Now, researchers from…
A new way of entangling light and sound
For a wide variety of emerging quantum technologies, such as secure quantum communications and quantum computing, quantum entanglement is a prerequisite. Scientists at the Max-Planck-Institute for the Science of Light…
Telescope for NASA’s Roman Mission complete, delivered to Goddard
NASA’s Nancy Grace Roman Space Telescope is one giant step closer to unlocking the mysteries of the universe. The mission has now received its final major delivery: the Optical Telescope…