Latest News

New simulations refine axion mass, refocusing dark matter search

Using adaptive mesh refinement, supercomputer simulation narrows axion mass range. Physicists searching — unsuccessfully — for today’s most favored candidate for dark matter, the axion, have been looking in the…

Satellite-derived salinity improves Arctic marine circulation prediction

This has been confirmed by researchers from the Institut de Ciències del Mar (ICM-CSIC) after producing sea salinity data obtained from measurements by the SMOS satellite, which were later incorporated…

Graphene sensor rapidly detects opioid metabolites in wastewater

Graphene multiplexed sensor works quicker, faster, and cheaper than previous opioid wastewater monitoring methods. The unique properties of the atom-thick sheet of carbon, known as graphene, enabled a new penny-sized,…

Breakthrough discovery in light interactions with nanoparticles

… paving the way for advances in optical computing. The work is a significant step toward realizing a new generation of ultra-compact, low-energy-use computers capable of complex mathematical computation. Computers…

Flexible OLED for homogeneous light in the operating room

Within the joint project LAOLA, which was funded by the German Federal Ministry of Education and Research (BMBF) and has now been completed, large-area lighting applications with OLEDs on flexible…

Measuring glucose concentration without enzymes

Sensor of novel material an alternative for blood glucose measurement. An interdisciplinary team of researchers at TU Bergakademie Freiberg has developed a novel sensor from a bio-based material that enables…

Page
1 1,180 1,181 1,182 1,183 1,184 18,030

Physics and Astronomy

DNA origami structures controlling biological membranes for targeted drug delivery

Shaping the Future: DNA Nanorobots That Can Modify Synthetic Cells

Scientists at the University of Stuttgart have succeeded in controlling the structure and function of biological membranes with the help of “DNA origami”. The system they developed may facilitate the…

Extreme weather events and climate resilience in 2024.

Facing the Storm: A Prepped Up Future Against Extreme Climatic and Weather Changes

From the persistent droughts of southern Africa and Central America in the early part of the year to the more recent devastating extreme rainfall in Spain and the deadly Hurricane…

Bismuth–antimony crystals demonstrating topological thermoelectrics under a weak magnetic field.

Magnetic Effect: Groundbreaking Discovery for Low-Temperature Thermoelectric Cooling

Researchers at the Max Planck Institute for Chemical Physics of Solids, in collaboration with Chongqing University and the Max Planck Institute of Microstructure Physics, have achieved a breakthrough in topological…

Life Sciences and Chemistry

Illustration of RNA modifications contributing to fungal drug resistance

Tackling Life-Threatening Fungal Infections Using RNA Modifications

Importance of RNA modifications for the development of resistance in fungi raises hope for more effective treatment of fungal infections. An often-overlooked mechanism of gene regulation may be involved in…

RNA-binding protein RbpB regulating gut microbiota metabolism in Bacteroides thetaiotaomicron.

Trust Your Gut—RNA-Protein Discovery for Better Immunity

HIRI researchers uncover control mechanisms of polysaccharide utilization in Bacteroides thetaiotaomicron. Researchers at the Helmholtz Institute for RNA-based Infection Research (HIRI) and the Julius-Maximilians-Universität (JMU) in Würzburg have identified a…

Diagram of lithium titanium phosphate crystal lattice structure showing its negative thermal expansion properties for enhanced lithium-ion battery performance.

Recharging the Future: Batteries Built for Extreme Cold Using Negative Thermal Expansion

Most solids expand as temperatures increase and shrink as they cool. Some materials do the opposite, expanding in the cold. Lithium titanium phosphate is one such substance and could provide…

Materials Sciences

Spintronics memory innovation: A new perpendicular magnetized film

Long gone are the days where all our data could fit on a two-megabyte floppy disk. In today’s information-based society, the increasing volume of information being handled demands that we…

Materials with a ‘twist’ show unexpected electronic behaviour

In the search for new materials that can enable more efficient electronics, scientists are exploring so-called 2-D materials. These are sheets of just one atom thick, that may have all…

Layer by Layer

How simulations help manufacturing of modern displays. Modern materials must be recyclable and sustainable. Consumer electronics is no exception, with organic light-emitting diodes (OLEDs) taking over modern televisions and portable…

Information Technology

Illustration of multiferroic heterostructures enabling energy-efficient MRAM with giant magnetoelectric effect.

Magnetic Memory Unlocked with Energy-Efficient MRAM

Researchers from Osaka University introduced an innovative technology to lower power consumption for modern memory devices. Stepping up the Memory Game: Overcoming the Limitations of Traditional RAM Osaka, Japan –…

Framework for automating RBAC compliance checks using process mining and policy validation tools.

Next-Level System Security: Smarter Access Control for Organizations

Cutting-Edge Framework for Enhancing System Security Researchers at the University of Electro-Communications have developed a groundbreaking framework for improving system security by analyzing business process logs. This framework focuses on…

NTU and NUS spin-off cutting-edge quantum control technology

AQSolotl’s quantum controller is designed to be adaptable, scalable and cost-efficient. Quantum technology jointly developed at Nanyang Technological University, Singapore (NTU Singapore) and National University of Singapore (NUS) has now…