Latest News

New broccoli compound appears promising against breast cancer

In the future, a “broccoli-pill” a day may help keep breast cancer at bay. Researchers have developed a new compound, designed from a known anticancer agent found in broccoli, that shows promise as a breast cancer preventive.

Apparently less toxic than its natural counterpart, the compound could be marketed for cancer prevention, the researchers say. Their findings were described at the 224th national meeting of the American Chemical Society, the world’s largest scientific society.

Gene trigger for pancreas formation identified

Before the pancreas is a pancreas, it is just two tiny bumps–two groups of cells sprouting from a central tube. What makes these cells bud off from the main group? How do they go on to make all the cell types of the mature pancreas? These are the kinds of questions that drive the research efforts of Vanderbilt developmental biologist Chris Wright and colleagues. The answers could pave the way toward limitless supplies of pancreatic cells for transplantation therapy of diabetes.

“It has bee

Discovery could bring widespread uses for ’nanocrystals’

Researchers at Purdue University have made a surprising discovery that could open up numerous applications for metal “nanocrystals,” or tiny crystals that are often harder, stronger and more wear resistant than the same materials in bulk form.

The research engineers have discovered that the coveted nanocrystals are contained in common scrap, the chips that are normally collected and melted down for reuse.

“Imagine, you have all of these bins full of chips, and they get melted down

’Jumping genes’ create ripples in the genome – and perhaps species’ evolution

Laboratory experiments led by Hopkins scientists have revealed that so-called “jumping genes” create dramatic rearrangement in the human genome when they move from chromosome to chromosome. If the finding holds true in living organisms, it may help explain the diversity of life on Earth, the researchers report in the current (Aug. 9) issue of Cell.

“Jumping genes,” or retrotransposons, are sequences of DNA that are easily and naturally copied from one location in the genome and inserted els

Studies define biochemical structure that keeps blood pressure low, bypass grafts open

A sort of biochemical scaffold for a compound that enables blood pressure to be low, heart bypass grafts to remain open and nerves to communicate has been identified by Medical College of Georgia researchers.

Researchers say identifying the framework for how these and other very positive health benefits occur should help them find ways to augment the benefits and identify new treatments for cardiovascular disease, which may result when the support structure falls apart.

“It’s

Genetics in Clinical Practice: A Revolutionary Approach

A DMS professor is leading the way in using computer technology for medical education with a pioneering virtual clinic to teach “Genetics in Clinical Practice.” Joseph V. Henderson, MD, a professor of community and family medicine who heads Dartmouth Medical School’s Interactive Media Lab (IML), created a “virtual practicum in genetics” using state-of-the-art interactive multimedia and world leaders in genetics research to foster more effective continuing medical education at DMS.

Hend

Page
1 17,832 17,833 17,834 17,835 17,836 18,031

Physics and Astronomy

DNA origami structures controlling biological membranes for targeted drug delivery

Shaping the Future: DNA Nanorobots That Can Modify Synthetic Cells

Scientists at the University of Stuttgart have succeeded in controlling the structure and function of biological membranes with the help of “DNA origami”. The system they developed may facilitate the…

Extreme weather events and climate resilience in 2024.

Facing the Storm: A Prepped Up Future Against Extreme Climatic and Weather Changes

From the persistent droughts of southern Africa and Central America in the early part of the year to the more recent devastating extreme rainfall in Spain and the deadly Hurricane…

Bismuth–antimony crystals demonstrating topological thermoelectrics under a weak magnetic field.

Magnetic Effect: Groundbreaking Discovery for Low-Temperature Thermoelectric Cooling

Researchers at the Max Planck Institute for Chemical Physics of Solids, in collaboration with Chongqing University and the Max Planck Institute of Microstructure Physics, have achieved a breakthrough in topological…

Life Sciences and Chemistry

Illustration of RNA modifications contributing to fungal drug resistance

Tackling Life-Threatening Fungal Infections Using RNA Modifications

Importance of RNA modifications for the development of resistance in fungi raises hope for more effective treatment of fungal infections. An often-overlooked mechanism of gene regulation may be involved in…

RNA-binding protein RbpB regulating gut microbiota metabolism in Bacteroides thetaiotaomicron.

Trust Your Gut—RNA-Protein Discovery for Better Immunity

HIRI researchers uncover control mechanisms of polysaccharide utilization in Bacteroides thetaiotaomicron. Researchers at the Helmholtz Institute for RNA-based Infection Research (HIRI) and the Julius-Maximilians-Universität (JMU) in Würzburg have identified a…

Diagram of lithium titanium phosphate crystal lattice structure showing its negative thermal expansion properties for enhanced lithium-ion battery performance.

Recharging the Future: Batteries Built for Extreme Cold Using Negative Thermal Expansion

Most solids expand as temperatures increase and shrink as they cool. Some materials do the opposite, expanding in the cold. Lithium titanium phosphate is one such substance and could provide…

Materials Sciences

Spintronics memory innovation: A new perpendicular magnetized film

Long gone are the days where all our data could fit on a two-megabyte floppy disk. In today’s information-based society, the increasing volume of information being handled demands that we…

Materials with a ‘twist’ show unexpected electronic behaviour

In the search for new materials that can enable more efficient electronics, scientists are exploring so-called 2-D materials. These are sheets of just one atom thick, that may have all…

Layer by Layer

How simulations help manufacturing of modern displays. Modern materials must be recyclable and sustainable. Consumer electronics is no exception, with organic light-emitting diodes (OLEDs) taking over modern televisions and portable…

Information Technology

Humans vs Machines—Who’s Better at Recognizing Speech?

Are humans or machines better at recognizing speech? A new study shows that in noisy conditions, current automatic speech recognition (ASR) systems achieve remarkable accuracy and sometimes even surpass human…

AI system analyzing subtle hand and facial gestures for sign language recognition.

Not Lost in Translation: AI Increases Sign Language Recognition Accuracy

Additional data can help differentiate subtle gestures, hand positions, facial expressions The Complexity of Sign Languages Sign languages have been developed by nations around the world to fit the local…

Illustration of multiferroic heterostructures enabling energy-efficient MRAM with giant magnetoelectric effect.

Magnetic Memory Unlocked with Energy-Efficient MRAM

Researchers from Osaka University introduced an innovative technology to lower power consumption for modern memory devices. Stepping up the Memory Game: Overcoming the Limitations of Traditional RAM Osaka, Japan –…