Latest News

Physics & Astronomy
2 mins read

First Glimpse of a Newborn Millisecond Pulsar System

Combining Hubble Space Telescope images with radio observations has revealed a highly unusual system consisting of a fast spinning pulsar and a bloated red companion star. The existence of the system is something of a mystery – the best explanation so far is that we have our first view of a millisecond pulsar just after it has been `spun up` by its red companion star.

Although more than 90 specimens of the exotic species of fast-spinning `millisecond pulsars` are known today, no observation

2 mins read
A thorium-doped calcium fluoride crystal's temperature is continually monitored while a VUV frequency comb is used to directly resolve individual quantum states of the nuclear transition. Image Credit: Steven Burrows/JILA
Physics & Astronomy

Precise Nuclear Timekeeping: The Role of Temperature Control

For decades, atomic clocks have been the pinnacle of precision timekeeping, enabling GPS navigation, cutting-edge physics research, and tests of fundamental theories. But researchers at JILA, led by JILA and NIST Fellow and University of Colorado Boulder physics professor Jun Ye, in collaboration with the Technical University of Vienna, are pushing beyond atomic transitions to something potentially even more stable: a nuclear clock. This clock could revolutionize timekeeping by using a uniquely low-energy transition within the nucleus of a thorium-229…

5 mins
Hurricane Igor (2010) over Bermuda and the MBL's Oceanic Flux Program research station. Image Credit: NASA MODIS
Earth Sciences

Hurricanes Leave Lasting Impact on Deep Ocean Ecosystems

By David Chandler WOODS HOLE, Mass. – The impact of hurricanes when they travel over land, or when they affect ships or oil-drilling platforms, are quite well understood. But these huge cyclones also stir up the ocean itself, with consequences that are relatively unknown and hard to study. But a unique, subsurface experimental platform moored to the floor of the Sargasso Sea, about 47 miles southeast of Bermuda, is changing that. With collection points at increasing depths along the mooring…

4 mins
L-R: Dr Wallace Jaffray, a post-doctoral research associate, Dr Marcello Ferrera, associate professor of nano-photonics, and Sven Stengel, PhD candidate. Image Credit: Heriot-Watt University
Physics & Astronomy

Unlocking New Dimensions in Light Manipulation for Photonics

Researchers at Heriot-Watt University have made a ground-breaking discovery paving the way for a transformative era in photonic technology. For decades, scientists have theorised the possibility of manipulating the optical properties of light by adding a new dimension—time. This once-elusive concept has now become a reality thanks to nanophotonics experts from the School of Engineering and Physical Sciences in Edinburgh, Scotland. The team’s breakthrough emerged from experiments with nanomaterials known as transparent conducting oxides (TCOs) – a special glass capable…

3 mins

Weekly Highlights

Peter Adams, PhD, is director and professor in theCancer Genome and Epigenetics Program at Sanford Burnham Prebys and senior and co-corresponding author of the study. Karl Miller, PhD, is a staff scientist in the Adams lab at Sanford Burnham Prebys and lead and co-corresponding author of the study. Image Credit: Sanford Burnham Prebys
Studies and Analyses

How Cellular Circuits Influence DNA Repair and Aging

Study reveals new information about how to prevent chronic inflammation from zombie-like cells that accumulate with age In humans and other multicellular organisms, cells multiply. This defining feature allows embryos to grow into adulthood, and enables the healing of the many bumps, bruises and scrapes along the way. Certain factors can cause cells to abandon this characteristic and enter a zombie-like state known as senescence where they persist but no longer divide to make new cells. Our bodies can remove…

Thrush Nightingale, Luscinia luscinia. A bird sits on a tree branch and sings. Image Credit by yuriybal, Envato
Studies and Analyses

Bird Vocal Changes May Indicate Aging Disorders in Humans

University of Arizona neuroscientists studying the brains of songbirds have found that aging alters the gene expressions that control the birds’ song. The finding could lead to earlier diagnoses and better treatments for human neurodegenerative disorders such as Parkinson’s disease and Alzheimer’s disease, which are known to hinder vocal production in their early stages. The study, published in the journal Neurobiology of Aging, found that networks of interacting genes, in a region of the bird’s brain involved with singing, dramatically…

The researchers. Image Credit: King's College London
Studies and Analyses

New Antibody Reduces Tumor Growth in Resistant Cancers

A new type of antibody which stimulates the immune system to target cancer cells slows tumor growth, according to new research Antibody treatment which activates the patient’s own immune system against cancer, known as immunotherapy, is increasingly being investigated as an alternative for chemotherapy and radiotherapy. This is because it specifically targets the cancer cells, which reduces the side effects seen with more conventional therapies. Tumours, such as some breast and ovarian cancers, can express the marker HER2. HER2 is…

For a century, astronomers have been studyingBarnard’s Starin the hope of finding planets around it. First discovered by E. E. Barnard atYerkes Observatoryin 1916, it is the nearest single star system to Earth. Now, using in part theGemini North telescope, one half of theInternational Gemini Observatory, partly funded by the U.S. National Science Foundation and operated by NSF NOIRLab, astronomers have discovered four sub-Earth exoplanets orbiting the star. One of the planets is the least massive exoplanet ever discovered using the radial velocity technique, indicating a new benchmark for discovering smaller planets around nearby stars. Image Credit: International Gemini Observatory/NOIRLab/NSF/AURA/P. Marenfeld
Physics & Astronomy

New Planetary System Discovered Around Nearest Star

Gemini North’s MAROON-X instrument finds evidence for four mini-Earth exoplanets around our famous cosmic neighbor Barnard’s Star For a century, astronomers have been studying Barnard’s Star in the hope of finding planets around it. First discovered by E. E. Barnard at Yerkes Observatory in 1916, it is the nearest single star system to Earth [1]. Barnard’s Star is classified as a red dwarf — low-mass stars that often host closely-packed planetary systems, often with multiple rocky planets. Red dwarfs are extremely numerous in the Universe, so scientists…

Closeup shot of a flock of butterfly on the ground. Image by wirestock, Envato
Studies and Analyses

Butterflies Choose Mates Based on Attractiveness Factors

Study links genetics, vision and neural processing to mating behavior in Heliconius butterflies A simple neural change alters mating preferences in male butterflies, aiding rapid behavioral evolution, Nicholas VanKuren and Nathan Buerkle at the University of Chicago, US, and colleagues, report March 11th in the open-access journal PLOS Biology. Heliconius are a group of tropical butterflies known for their wide variety of wing patterns and colors, which act as a warning to predators. Because wing coloration is crucial for their…

A child participant perceiving color in the study. Image Credit: (KyotoU/Moriguchi lab)
Science Reports

Unlocking Visual Insights Through New Innovation Tools

Understanding children’s subjective experiences through color As a child, did it ever occur to you that your perception of color differed from that of others? It’s quite common to have this thought, but it turns out that the human color experience may be more universal than we previously believed. In psychology and neuroscience, the relationship between subjective experience, such as how we perceive color, and physical brain activity has remained an unresolved problem. Furthermore, due to their limited language abilities,…

This infrared image from NASA’s James Webb Space Telescope was taken by the onboard Near-Infrared Camera for the JWST Advanced Deep Extragalactic Survey, or JADES, program. The NIRCam data was used to determine which galaxies to study further with spectroscopic observations. One such galaxy, JADES-GS-z14-0 (shown in the pullout), was determined to be at a redshift of 14.3, making it the current record-holder for most distant known galaxy. This corresponds to a time less than 300 million years after the big bang. Image Credit: NASA, ESA, CSA, STScI, Brant Robertson (UC Santa Cruz), Ben Johnson (CfA), Sandro Tacchella (Cambridge), Marcia Rieke (University of Arizona), Daniel Eisenstein (CfA), Phill Cargile (CfA)
Physics & Astronomy

James Webb Telescope Uncovers Complex Chemistry in Primordial Galaxy

University of Arizona astronomers have learned more about a surprisingly mature galaxy that existed when the universe was just less than 300 million years old – just 2% of its current age. Observed by NASA’s James Webb Space Telescope, the galaxy – designated JADES-GS-z14-0 – is unexpectedly bright and chemically complex for an object from this primordial era, the researchers said. This provides a rare glimpse into the universe’s earliest chapter. The findings, published in the journal Nature Astronomy, build…

Awarded by the Texas Academy of Medicine, Engineering, Science and Technology (TAMEST) and Lyda Hill Philanthropies, the prize recognizes groundbreaking innovations with the potential for real-world impact.Dr. Liu shares the award as co-principal investigator alongsideJames Chelikowsky, a professor of physics and chemical engineering at UT Austin.“Our research will make the U.S. more competitive in the world,” Liu said. “We lag behind many other countries in magnet research even though magnets are crucial components in everyday devices like laptops, tablets, smartphones and robotics, as well as renewable technologies such as wind turbines and electric vehicles. These devices rely heavily on the use of rare-earth elements that are expensive and environmentally destructive to extract. Our research focuses on using more abundant elements that can be sourced domestically with less environmental damage.” Image Credit: UTA
Awards Funding

UTA Team Wins Award for Key US Magnet Technology

Physics professor J. Ping Liu helps boost nation’s energy security and advance toward a world-class magnet research hub University of Texas at Arlington physics Professor J. Ping Liu has won the 2025 Hill Prize in Physical Sciences for pioneering new ways to design magnets that power high-tech devices. Awarded by the Texas Academy of Medicine, Engineering, Science and Technology (TAMEST) and Lyda Hill Philanthropies, the prize recognizes groundbreaking innovations with the potential for real-world impact. Dr. Liu shares the award as co-principal…

Confocal microscopy images: Taken by Samarpita Sen, The Gurdon Institute, University of Cambridge. Rendered in this form by Rituparno Chowdhury. Image Credit: Samarpita Sen/Rituparno Chowdhury

Innovations in
Material Sciences

Materials Sciences
3 mins read

Twisted Light: A New Power Source for Next-Gen Electronics

Researchers have advanced a decades-old challenge in the field of organic semiconductors, opening new possibilities for the future of electronics. The researchers, led by the University of Cambridge and the Eindhoven University of Technology, have created an organic semiconductor that forces electrons to move in a spiral pattern, which could improve the efficiency of OLED displays in television and smartphone screens, or power next-generation computing technologies such as spintronics and quantum computing. The semiconductor they developed emits circularly polarised light—meaning…

Read more
Information Technology

Unlocking Your True Biological Age: AI Insights From Blood Drops

We all know someone who seems to defy aging—people who look younger than their peers despite being the same age. What’s their secret? Scientists at Osaka University (Japan) may have found a way to quantify this difference. By incorporating hormone (steroid) metabolism pathways into an AI-driven model, they have developed a new system to estimate a person’s biological age a measure of how well their body has aged, rather than just counting the years since birth. Using just five drops…

This map, which shows glaciers and tributaries in patterned flows, was created using the same data that Stanford researchers used to train an AI model that revealed some of the fundamental physics governing the large-scale movements of the Antarctic ice sheet. (Image credit: NASA's Goddard Space Flight Center Scientific Visualization Studio). Image Credit: NASA's Goddard Space Flight Center Scientific Visualization Studio
Information Technology

AI Uncovers New Insights Into Antarctic Ice Flow

As the planet warms, Antarctica’s ice sheet is melting and contributing to sea-level rise around the globe. Antarctica holds enough frozen water to raise global sea levels by 190 feet, so precisely predicting how it will move and melt now and in the future is vital for protecting coastal areas. But most climate models struggle to accurately simulate the movement of Antarctic ice due to sparse data and the complexity of interactions between the ocean, atmosphere, and frozen surface. In…

Visualizations of the semantic structure information in backbone stages. Pixels of the same class as the marked pixel are brightly colored. The brighter the color, the higher the similarity. Our motivation comes from this phenomenon. Image Credit: Yanpeng SUN, Zechao LI
Information Technology

Semantic Structure Aware Inference for Pixel-Wise Predictions

CAM is proposed to highlight the class-related activation regions for an image classification network, where feature positions related to the specific object class are activated and have higher scores while other regions are suppressed and have lower scores. For specific visual tasks, CAM can be used to infer the object bounding boxes in weakly-supervised object location(WSOL) and generate pseudo-masks of training images in weakly-supervised semantic segmentation (WSSS). Therefore, obtaining the high-quality CAM is very important to improve the recognition performance…

Post-LLM roadmap. Image Credit: Fei Wu et al.
Information Technology

New Horizons for AI in the Post-LLM Era: Knowledge & Collaboration

A recent paper published in the journal Engineering delves into the future of artificial intelligence (AI) beyond large language models (LLMs). LLMs have made remarkable progress in multimodal tasks, yet they face limitations such as outdated information, hallucinations, inefficiency, and a lack of interpretability. To address these issues, researchers explore three key directions: knowledge empowerment, model collaboration, and model co-evolution. Knowledge empowerment aims to integrate external knowledge into LLMs. This can be achieved through various methods, including integrating knowledge into training objectives,…

man-showing-virtual-reality-to-woman

New Discoveries
in Social Sciences

Social Sciences
6 mins read

Cambridge Study Reveals New VR Treatment for Speech Anxiety

As discussed in the paper, the fear of public speaking is widely cited as being the most common fear. Furthermore, there is evidence to suggest that the prevalence of social anxiety and a fear of public speaking are both on the rise. This is concerning when one considers the range of known subsequent negative impacts on mental health, physical health, academic attainment, and career progression. To address this, Dr Chris Macdonald created an online platform where users transform into skilled…

Read more
A thorium-doped calcium fluoride crystal's temperature is continually monitored while a VUV frequency comb is used to directly resolve individual quantum states of the nuclear transition. Image Credit: Steven Burrows/JILA
Physics & Astronomy

Precise Nuclear Timekeeping: The Role of Temperature Control

For decades, atomic clocks have been the pinnacle of precision timekeeping, enabling GPS navigation, cutting-edge physics research, and tests of fundamental theories. But researchers at JILA, led by JILA and NIST Fellow and University of Colorado Boulder physics professor Jun Ye, in collaboration with the Technical University of Vienna, are pushing beyond atomic transitions to something potentially even more stable: a nuclear clock. This clock could revolutionize timekeeping by using a uniquely low-energy transition within the nucleus of a thorium-229…

L-R: Dr Wallace Jaffray, a post-doctoral research associate, Dr Marcello Ferrera, associate professor of nano-photonics, and Sven Stengel, PhD candidate. Image Credit: Heriot-Watt University
Physics & Astronomy

Unlocking New Dimensions in Light Manipulation for Photonics

Researchers at Heriot-Watt University have made a ground-breaking discovery paving the way for a transformative era in photonic technology. For decades, scientists have theorised the possibility of manipulating the optical properties of light by adding a new dimension—time. This once-elusive concept has now become a reality thanks to nanophotonics experts from the School of Engineering and Physical Sciences in Edinburgh, Scotland. The team’s breakthrough emerged from experiments with nanomaterials known as transparent conducting oxides (TCOs) – a special glass capable…

“We have demonstrated that by using optical vortex beams—light beams that carry angular momentum—we can precisely control how an electron is ejected from an atom”Ravi Bhardwaj— Full Professor at uOttawa’s Department of Physics. Image Credit: University of Ottawa
Physics & Astronomy

uOttawa Scientists Use Light to Reveal Atomic Secrets

A team of researchers from the University of Ottawa has made significant strides in understanding the ionization of atoms and molecules, a fundamental process in physics that has implications for various fields including x-ray generation and plasma physics. Think about atoms – the building blocks of everything around us. Sometimes, they lose their electrons and become charged particles (that’s ionization). It happens in lightning, in plasma TVs, and even in the northern lights. Until now, scientists thought they could only…

From within the Mare Crisium impact basin, the SwRI-led Lunar Magnetotelluric Sounder (LMS) is making the first geophysical measurements representative of the bulk of the Moon. Most of the Apollo missions landed in the region of linked maria to the west (left image), whose crust was later shown to be compositionally distinct (right image) as exemplified by the concentration of the element thorium. Mare Crisium provides a smooth landing site on the near side of the Moon outside of this anomalous region. Image Credit: NASA
Physics & Astronomy

SwRI Deploys Innovative Sounder Instrument on Lunar Surface

Lunar Magnetotelluric Sounder to characterize Moon’s mantle Just hours after touching down on the surface of the Moon on March 2 aboard Firefly Aerospace’s Blue Ghost 1 lander, the Southwest Research Institute-led Lunar Magnetotelluric Sounder (LMS) was activated and deployed its five sensors to study the Moon’s interior by measuring electric and magnetic fields. The LMS instrument is the first extraterrestrial application of magnetotellurics. “For more than 50 years, scientists have used magnetotellurics on Earth for a wide variety of…

(Left) Schematic representation of the structure of a porous carbon catalyst with boron doping on the surface and carbon walls forming the mesopores.(Right) Mesopore structure and atomic-scale distribution of boron in the carbon catalyst measured using transmission electron microscopy and atomic force microscopy. Image Credit: Korea Institute of Science and Technology
Life & Chemistry

KIST Develops Carbon Catalyst for Green Hydrogen Peroxide

Mesopore introduction enables world-class hydrogen peroxide production characteristics even in low oxygen air supply environments Hydrogen peroxide is one of the world’s top 100 industrial chemicals with a wide range of applications in the chemical, medical, and semiconductor industries. Currently, hydrogen peroxide is mainly produced through the anthraquinone process, but this process has several problems, including high energy consumption, the use of expensive palladium catalysts, and environmental pollution due to by-products. In recent years, an environmentally friendly method of producing…

A logarithmic spiral with a diameter of 500 μm, approximately half the diameter of a sewing needle. Image Credit: Yilin Wong
Life & Chemistry

Chemistry and Force Create Stunning Spiral Patterns on Surfaces

Hundreds of regular patterns spontaneously form on a small germanium chip Key takeaways UCLA doctoral student Yilin Wong noticed that some tiny dots had appeared on one of her samples, which had been accidentally left out overnight. The layered sample consisted of a germanium wafer topped with evaporated metal films in contact with a drop of water. On a whim, she looked at the dots under a microscope and couldn’t believe her eyes. Beautiful spiral patterns had been etched into the…

Scientist examining cells under a microscope with reflection in glasses. Credit by Image-Source, Envato
Life & Chemistry

Exploring Electrochemistry in Condensate Innovations

By Leah Shaffer Much of cell behavior is governed by the actions of biomolecular condensates: building block molecules that glom together and scatter apart as needed. Biomolecular condensates constantly shift their phase, sometimes becoming solid, sometimes like little droplets of oil in vinegar, and other phases in between. Understanding the electrochemical properties of such slippery molecules has been a recent focus for researchers at Washington University in St. Louis. In research published in Nature Chemistry, Yifan Dai, assistant professor of…

A pair of dorcas copper butterflies, a North America native species, and one of the 324 species studied in this report. Image Credit: Photo by David Pavlik, Michigan State University
Life & Chemistry

Study Explores Future Without Butterflies in Ecosystems

Butterflies are disappearing in the United States. All kinds of them. With a speed scientists call alarming, and they are sounding an alarm. A sweeping new study published in Science for the first time tallies butterfly data from more than 76,000 surveys across the continental United States. The results: between 2000 and 2020, total butterfly abundance fell by 22% across the 554 species counted. That means that for every five individual butterflies within the contiguous U.S. in the year 2000,…

Confocal microscopy images: Taken by Samarpita Sen, The Gurdon Institute, University of Cambridge. Rendered in this form by Rituparno Chowdhury. Image Credit: Samarpita Sen/Rituparno Chowdhury
Materials Sciences

Twisted Light: A New Power Source for Next-Gen Electronics

Researchers have advanced a decades-old challenge in the field of organic semiconductors, opening new possibilities for the future of electronics. The researchers, led by the University of Cambridge and the Eindhoven University of Technology, have created an organic semiconductor that forces electrons to move in a spiral pattern, which could improve the efficiency of OLED displays in television and smartphone screens, or power next-generation computing technologies such as spintronics and quantum computing. The semiconductor they developed emits circularly polarised light—meaning…

A new paper from the lab of Asst. Prof. Chibueze Amanchukwu (left) of the UChicago Pritzker School of Molecular Engineering, including first author Priyadarshini Mirmira (right), demonstrates a new technique for building inorganic and polymer electrolytes at the same time and in the same vessel. (Photo by John Zich). Image Credit: UChicago Pritzker School of Molecular Engineering / John Zich
Materials Sciences

New One-Pot Technique Enhances Material Synthesis Efficiency

UChicago Pritzker School of Molecular Engineering research created inorganic and polymer battery electrolytes simultaneously, with potential applications across chemistry Creating battery electrolytes – the component that carries the charged particles back and forth between a battery’s two terminals – has always been a tradeoff. Solid-state inorganic electrolytes move the particles extremely efficiently, but being solid and inorganic means they’re also brittle, hard to work with and difficult to connect seamlessly with the terminals. Polymer electrolytes are a dream to work…

The lowest energy and the dynamical unstable configurations, as well as their corresponding phonon dispersion relationships. Image Credit: WANG XIanlong
Materials Sciences

Phosphorus Doping Enhances Stability of Polymer Nitrogen

Using first-principles calculations, a research group led by Prof. WANG Xianlong from the Hefei Institutes of Physical Science of the Chinese Academy of Sciences, found that phosphorus doping is an effective way to achieve high-energy polymeric nitrogen with black-phosphorus structure (BP-N) stable at ambient pressure. The research results were published in Matter and Radiation at Extremes. Cubic gauche nitrogen with diamond-like structure and BP-N with black phosphorus structure, represented by polymeric all-nitrogen materials, are a class of high-energy density materials composed…

Precisely tailored Zn1−xCdxSe/ZnSe shells with a continuous gradient structure were synthesized using the facile high-temperature successive ion layer adsorption and reaction (HT-SILAR) strategy. This process enables the formation of large-particle alloyed red CdZnSe/Zn1−xCdxSe/ZnSe/ZnS/CdZnS QDs. The obtained QDs exhibit an ultra-narrow FWHM of 17.1 nm and a near-unity PLQY, resulting in a record EQE of 38.2% and an exceptional T95 lifetime of over 21,000 hours (tested at 1000 cd m–2) for red QLEDs.
Materials Sciences

Quantum Dot Technology: Enhanced Color and Longevity in Displays

Quantum dot light-emitting diodes (QLEDs) have made rapid progress in luminescence, efficiency, and stability, making them promising candidates for displays and solid-state lighting applications. However, achieving high-performance QLEDs with high color purity remains a persistent challenge, particularly red QLEDs, thus limiting the popularity of ultra-high definition devices. Recently, Soochow University, in collaboration with Macau University of Science and Technology and other research institutes, reported a facile high-temperature successive ion layer adsorption and reaction (HT-SILAR) strategy for the growth of high-quality,…

Hurricane Igor (2010) over Bermuda and the MBL's Oceanic Flux Program research station. Image Credit: NASA MODIS
Earth Sciences

Hurricanes Leave Lasting Impact on Deep Ocean Ecosystems

By David Chandler WOODS HOLE, Mass. – The impact of hurricanes when they travel over land, or when they affect ships or oil-drilling platforms, are quite well understood. But these huge cyclones also stir up the ocean itself, with consequences that are relatively unknown and hard to study. But a unique, subsurface experimental platform moored to the floor of the Sargasso Sea, about 47 miles southeast of Bermuda, is changing that. With collection points at increasing depths along the mooring…

Proportion of current geological resource production exceeding production capacity determined by the regional water availability for the top ten geological resources with the largest volume of water overconsumption. Image Credit: National Institute of Advanced Industrial Science and Technology (AIST)
Earth Sciences

Geological Resources and Regional Water Availability Limits

The study shows that the regional water availability constrains the current and future production of 32 geological resources Geological resources such as critical metals and minerals, essential for the diffusion of technologies such as renewable energy and energy storage towards a decarbonized society, are indispensable for supporting modern life in the form of various products and services. Their demand is expected to increase in the coming years owing to global population as well as economic growth. Thus far, scientists and…

CUREE, an autonomous underwater robot, is used by the researchers to collect acoustic data for analysis. Image Credit: Austin Greene, Woods Hole Oceanographic Institution
Earth Sciences

Neural Network Identifies Coral Reef Sounds with ‘Fishial’ Recognition

Faster identification of fish sounds from acoustic recordings can improve research, conservation efforts Coral reefs are some of the world’s most diverse ecosystems. Despite making up less than 1% of the world’s oceans, one quarter of all marine species spend some portion of their life on a reef. With so much life in one spot, researchers can struggle to gain a clear understanding of which species are present and in what numbers. In JASA, published on behalf of the Acoustical…

Flooding in the low-lying Mapunapuna industrial area on O'ahu, Hawai'i. Image Credit: Hawaiʻi Sea Grant King Tides Project.
Earth Sciences

Flooding Risks Increase in Hawai’i’s Sinking Coastal Areas

Some parts of Hawai‘i are sinking faster than others. That discovery, published recently in a study by researchers at the University of Hawai‘i (UH) at Mānoa, also highlights that as sea level rises, the infrastructure, businesses, and communities in these low-lying areas are at risk of flooding sooner than scientists anticipated, particularly in certain urban areas of O‘ahu. “Our findings highlight that subsidence is a major, yet often overlooked, factor in assessments of future flood exposure,” said Kyle Murray, lead…

Feedback