New on-chip device uses exotic light rays in 2D material to detect molecules. Researchers have developed a highly sensitive detector for identifying molecules via their infrared vibrational “fingerprint”. Published in Nature Communications, this innovative detector converts incident infrared light into ultra-confined “nanolight” in the form of phonon polaritons within the detector´s active area. This mechanism serves two crucial purposes: it boosts the overall detector´s sensitivity and enhances the vibrational fingerprint of nanometer-thin molecular layer placed on top of the detector, allowing…
Lung cancer remains one of the leading causes of cancer-related mortality, with lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC) representing the most prevalent subtypes of non-small cell lung cancer (NSCLC). Despite their classification under the same umbrella, these two forms of lung cancer exhibit distinct genetic landscapes, therapeutic targets, and treatment responses. Recent advancements in next-generation gene sequencing have identified key driver genes that differentiate LUAD and LUSC, influencing their respective clinical management approaches. LUAD is frequently associated…
An ambitious project led by Vanderbilt University Medical Center investigators aims to use artificial intelligence technologies to generate antibody therapies against any antigen target of interest. VUMC has been awarded up to $30 million from the Advanced Research Projects Agency for Health (ARPA-H) to build a massive antibody-antigen atlas, develop AI-based algorithms to engineer antigen-specific antibodies, and apply the AI technology to identify and develop potential therapeutic antibodies. ARPA-H is an agency within the U.S. Department of Health and Human…
American Heart Association Epidemiology and Prevention | Lifestyle and Cardiometabolic Health Scientific Sessions 2025 – Oral Presentation 060 Research Highlights: Embargoed until 11 a.m. CT/12 p.m. ET, Sunday March 9, 2025 This news release contains updated information from the researcher that was not in the abstract and will be referenced in the oral presentation. Among postmenopausal women with a history of cancer, taking more daily steps and engaging in moderate-to-vigorous physical activity were both associated with a significantly reduced risk…
A JCAP study proposes a test for the Cosmological Principle using weak gravitational lensing “The cosmological principle is like an ultimate kind of statement of humility,” explains James Adam, astrophysicist at the University of the Western Cape, Cape Town, South Africa, and lead author of the new paper. According to the Cosmological Principle, not only are we not at the center of the Universe, but a true center does not exist. A further assumption, similar to but distinct and independent…
ISTA scientists uncover how the brain unblurs vision during movement Why do our mental images stay sharp even when we are moving fast? A team of neuroscientists led by Professor Maximilian Jösch at the Institute of Science and Technology Austria (ISTA) has identified a mechanism that corrects visual distortions caused by movement in animals. The study, conducted in mice, identifies a core function that can be generalized across the vertebrate visual system, including primates such as humans. The findings are…
A UCLA research team has found that drugs being sold as fentanyl contain high amounts of the industrial chemical bis(2,2,6,6-tetramethyl-4-piperidyl) sebacate, or BTMPS. This new substance of concern emerged in the illicit drug supply nearly simultaneously in multiple U.S. locations from coast-to-coast. From June through October 2024, the team quantitatively tested samples of drugs sold as fentanyl that had high levels of the chemical, which belongs to a class of compounds called hindered amine light stabilizers and has a variety…
Measurements and data collected from space can be used to better understand life on Earth. An ambitious, multinational research project funded by NASA and co-led by UC Merced civil and environmental engineering Professor Erin Hestir demonstrated that Earth’s biodiversity can be monitored and measured from space, leading to a better understanding of terrestrial and aquatic ecosystems. Hestir led the team alongside University of Buffalo geography Professor Adam Wilson and Professor Jasper Slingsby from the University of Cape Town on BioSCape, which collected data over six…
Discovery creates opportunities to study therapeutic properties of ibogaine and related compounds Ibogaine — a psychoactive plant derivative — has attracted attention for its anti-addictive and anti-depressant properties. But ibogaine is a finite resource, extracted from plants native to Africa like the iboga shrub (Tabernanthe iboga) and the small-fruited voacanga tree (Voacanga africana). Further, its use can lead to irregular heartbeats, introducing safety risks and an overall need to better understand how its molecular structure leads to its biological effects….
Improved approach to marine conservation aligns ecological restoration with human well-being Could 2025 be the year marine protection efforts get a “glow up”? According to a team of conservation-minded researchers, including Octavio Aburto of UC San Diego’s Scripps Institution of Oceanography, the moment has arrived. In a new study published Feb. 6 in the journal Frontiers in Marine Science, Aburto and a multinational team of marine scientists and economists unveil a comprehensive framework for Marine Prosperity Areas, or MPpAs. With…
UCalgary scientist says it’s important to determine what happened and what can be learned Experts from the global Earth science community – including a scientist from the University of Calgary – have pieced together what happened during the massive Sikkim flood to try to help others prepare for similar disasters. On Oct. 3, 2023, a multi-hazard cascade in the Sikkim Himalaya, India, was triggered by a permanently frozen (permafrost) lateral moraine – debris from erosion along a glacier – collapsing…
Grant enables study into mechanical properties of episiotomy cuts Millions of women undergo episiotomies during childbirth every year, yet the mechanics behind these surgical cuts remain largely unstudied. A new research project is poised to change that, addressing this significant gap in women’s health. An episiotomy involves cutting the pelvic-floor muscles to aid delivery, a technique currently guided largely by a surgeon’s personal judgment and experience. While intended to prevent severe vaginal tears or other complications during delivery, the procedure…
How simulations help manufacturing of modern displays. Modern materials must be recyclable and sustainable. Consumer electronics is no exception, with organic light-emitting diodes (OLEDs) taking over modern televisions and portable device displays. However, the development of suitable materials – from the synthesis of molecules to the production of display components – is very time-consuming. Scientists led by Denis Andrienko of the Max Planck Institute for Polymer Research and Falk May from Display Solutions at Merck have now developed a simulation…
A recent paper published in the journal Engineering delves into the future of artificial intelligence (AI) beyond large language models (LLMs). LLMs have made remarkable progress in multimodal tasks, yet they face limitations such as outdated information, hallucinations, inefficiency, and a lack of interpretability. To address these issues, researchers explore three key directions: knowledge empowerment, model collaboration, and model co-evolution. Knowledge empowerment aims to integrate external knowledge into LLMs. This can be achieved through various methods, including integrating knowledge into training objectives,…
Hyperspectral imaging and AI can identify individuals using blood vessels in palms Hyperspectral imaging is a technology that detects slight differences in color to pinpoint the characteristics and conditions of an object. While a normal camera creates images using red, green, and blue, a hyperspectral camera can obtain over 100 images in the visible to near-infrared light range in a single shot. As a result, hyperspectral imaging can obtain information that the human eye cannot see. Specially Appointed Associate Professor…
Q&A with Brendan Cottrell, who investigated the use of smartphones to create 3D scans of stranded marine life that can help scientists protect marine species What inspired you to become a researcher? My interest in research began with an early love for nature, particularly the ocean and its wildlife. Drawn to conservation, I am fascinated by how technology can help study and protect marine mammals. Can you tell us about the research you’re currently working on? This research focuses on…
A new study published in Engineering presents a novel framework that combines machine learning (ML) and blockchain technology (BT) to enhance computational security in engineering. The framework, named Machine Learning on Blockchain (MLOB), aims to address the limitations of existing ML-BT integration solutions that primarily focus on data security while overlooking computational security. ML has been widely used in engineering to solve complex problems, offering high accuracy and efficiency. However, it faces security threats such as data tampering and logic corruption….
A dynamic left-hand squeeze helps to optimize performance. The images are legendary: Tennis stars who hit the deciding match ball just outside the line, golfers who putt the ball past the cup from only inches away, and speakers who suddenly can’t say a word. These individuals all have one thing in common: They are unable to access their performance abilities in a crucial situation. A research team at the Technical University of Munich (TUM) investigated the phenomenon and has come…
Computer simulations reveal how water separates into high-density and low-density liquids Water is unique. It is one of the only substances that can exist in nature as a solid, liquid and gas at the same time under ambient conditions (think of solid ice over a pond, which is liquid underneath while storm clouds float overhead). It is also one of the only substances whose solid form is less dense than its liquid — this is why ice floats. Now scientists…
Cutting-edge observations of Centaurus Cluster shine new light on evolving universe The XRISM collaboration have discovered flows of hot gas in the core of the Centaurus Cluster. By comparing state-of-the-art X-ray measurements from the XRISM satellite with numerical simulations, they showed this is evidence for collisions between galaxy clusters, causing gas inside to “slosh”. This solves the longstanding mystery of how cluster cores stay hot, and sheds light on how our universe continues to evolve. Astronomers have long envisioned how…
EP’s cutting-edge instruments and international collaboration drive new discoveries in transient and multi-messenger astronomy The Science White Paper for the Einstein Probe (EP) mission has been published in Science China: Physics, Mechanics & Astronomy. This mission, spearheaded by the Chinese Academy of Sciences (CAS) in collaboration with the European Space Agency (ESA), the Max Planck Institute for Extraterrestrial Physics (MPE), and the French National Centre for Space Studies (CNES), is poised to advance the field of time-domain and X-ray astronomy…
New method to detect life makes Mars sample return protocols rock solid Within the next decade, space agencies plan to bring samples of rock from Mars to Earth for study. Of concern is the possibility these samples contain life, which could have unforeseen consequences. Therefore, researchers in this field strive to create methods to detect life. For the first time, researchers, including those from the University of Tokyo and NASA, successfully demonstrated a method to detect life in ancient rocks…
Butterflies are disappearing in the United States. All kinds of them. With a speed scientists call alarming, and they are sounding an alarm. A sweeping new study published in Science for the first time tallies butterfly data from more than 76,000 surveys across the continental United States. The results: between 2000 and 2020, total butterfly abundance fell by 22% across the 554 species counted. That means that for every five individual butterflies within the contiguous U.S. in the year 2000,…
Recently, a collaborative research team led by Professor WANG Hui and Professor ZHANG Xin from the Hefei Institutes of Physical Science of the Chinese Academy of Sciences, successfully developed a novel carbon-coated nickel ferrite (NFN@C) nanocatalyst with significant potential in cancer therapy. The results have been published in Advanced Functional Materials. Cancer therapy has always struggled with targeting tumor cells effectively while minimizing damage to healthy tissue. Traditional treatments like chemotherapy and radiation often have limited precision and serious side effects….
New study finds minerals drive phosphorus release at enzyme-like rates Northwestern University researchers are actively overturning the conventional view of iron oxides as mere phosphorus “sinks.” A critical nutrient for life, most phosphorus in the soil is organic — from remains of plants, microbes or animals. But plants need inorganic phosphorus — the type found in fertilizers — for food. While researchers traditionally thought only enzymes from microbes and plants could convert organic phosphorus into the inorganic form, Northwestern scientists previously…
A breakthrough iron-based catalyst achieves near-perfect efficiency for water oxidation, offering a sustainable solution for hydrogen production A newly developed pentanuclear iron complex (Fe5-PCz(ClO₄)₃) can offer an efficient, stable, and cost-effective solution for water oxidation. By electrochemically polymerizing the complex, researchers from Institute of Science Tokyo obtained a polymer-based catalyst, poly-Fe5-PCz, and achieved water oxidation with up to 99% Faradaic efficiency and exceptional stability, even under rigorous conditions. This breakthrough offers a scalable alternative to rare metal catalysts, advancing hydrogen…
UChicago Pritzker School of Molecular Engineering research created inorganic and polymer battery electrolytes simultaneously, with potential applications across chemistry Creating battery electrolytes – the component that carries the charged particles back and forth between a battery’s two terminals – has always been a tradeoff. Solid-state inorganic electrolytes move the particles extremely efficiently, but being solid and inorganic means they’re also brittle, hard to work with and difficult to connect seamlessly with the terminals. Polymer electrolytes are a dream to work…
Using first-principles calculations, a research group led by Prof. WANG Xianlong from the Hefei Institutes of Physical Science of the Chinese Academy of Sciences, found that phosphorus doping is an effective way to achieve high-energy polymeric nitrogen with black-phosphorus structure (BP-N) stable at ambient pressure. The research results were published in Matter and Radiation at Extremes. Cubic gauche nitrogen with diamond-like structure and BP-N with black phosphorus structure, represented by polymeric all-nitrogen materials, are a class of high-energy density materials composed…
Quantum dot light-emitting diodes (QLEDs) have made rapid progress in luminescence, efficiency, and stability, making them promising candidates for displays and solid-state lighting applications. However, achieving high-performance QLEDs with high color purity remains a persistent challenge, particularly red QLEDs, thus limiting the popularity of ultra-high definition devices. Recently, Soochow University, in collaboration with Macau University of Science and Technology and other research institutes, reported a facile high-temperature successive ion layer adsorption and reaction (HT-SILAR) strategy for the growth of high-quality,…
Scientists at Penn State have harnessed a unique property called incipient ferroelectricity to create a new type of computer memory that could revolutionize how electronic devices work, such as using much less energy and operating in extreme environments like outer space. They published their work, which focuses on multifunctional two-dimensional field-effect transistors (FETs), in Nature Communications. FETs are advanced electronic devices that use ultra-thin layers of materials to control electrical signals, offering multiple functions like switching, sensing or memory in a…
Some parts of Hawai‘i are sinking faster than others. That discovery, published recently in a study by researchers at the University of Hawai‘i (UH) at Mānoa, also highlights that as sea level rises, the infrastructure, businesses, and communities in these low-lying areas are at risk of flooding sooner than scientists anticipated, particularly in certain urban areas of O‘ahu. “Our findings highlight that subsidence is a major, yet often overlooked, factor in assessments of future flood exposure,” said Kyle Murray, lead…
A new study led by researchers at Cardiff University, the University of Oxford, the University of Bristol, and the University of Michigan has revealed that two continent-size regions in Earth’s deep mantle have distinctive histories and resulting chemical composition, in contrast to the common assumption they are the same. The findings are available to read in the journal Scientific Reports. Seismologists have long known that seismic waves – generated by earthquakes – do not travel through all parts of Earth’s…
The discovery that inert helium can bond with iron could rewrite Earth’s history Researchers from Japan and Taiwan reveal for the first time that helium, usually considered chemically inert, can bond with iron under high pressures. They used a laser-heated diamond anvil cell to find this, and the discovery suggests there could be huge amounts of helium in the Earth’s core. This could challenge long-standing ideas about the planet’s internal structure and history, and may even reveal details of the…
A newly operational model, known as the Artificial Intelligence Forecasting System (AIFS), has been launched by the European Centre for Medium-Range Weather Forecasts (ECMWF), an intergovernmental centre and leader in numerical weather prediction. ECMWF – Europe’s leading centre for weather prediction makes forecast data from AI model available to all A newly operational model, known as the Artificial Intelligence Forecasting System (AIFS), has been launched by the European Centre for Medium-Range Weather Forecasts (ECMWF), an intergovernmental centre and leader in…