A better understanding of turbulence

The wind tunnel at MPI-DS allows to generate very high degrees of turbulence at high pressure to measure different flows.
(c) MPI-DS

Experiments at the unique wind tunnel of the Max Planck Institute for Dynamics and Self-Organization (MPI-DS) in Göttingen show that laws formulated more than 80 years ago and their extensions only incompletely explain turbulent flows.

Stirring a cup of coffee creates a turbulent flow with large and very small vortices. The vortices of different sizes influence each other by transferring energy from a larger vortex to a smaller one, down to the smallest vortex, which dissipates in the liquid due to friction. This concept was first described by mathematician Andrei Kolmogorov, who established general scaling laws for turbulent flows in 1941. Using these and further refinements, computer simulations for engineered flows, weather forecasts and climate models are still created from empirical data today.

“We found that these scaling laws seem to apply only to strongly idealized flows,” reports Christian Küchler, first author of the study. Previously, it had been assumed that they were universally valid. Even before that, measurements in wind tunnels at lower turbulence levels could not confirm the theoretical predictions, but they were usually attributed to the turbulence strength being too low. “In our unique channel, we can use gases at high pressures and thus achieve extremely high degrees of turbulence,” says MPI-DS director Eberhard Bodenschatz, who designed the channel for his research.

By selectively generating turbulence and using an active grid, developed at MPI-DS by coauthor Greg Bewley from Cornell University, the researchers were able to show that systematic deviations from Kolmogorov’s predictions occur even in the strongest turbulence. This implies that medium-sized eddies in real flows are not completely decoupled from the very large eddies in a system by energy transfer, as has been suspected since 1941. Moreover, these new results are universal and do not depend on the strength of turbulence in the channel.

“Our wind tunnel allows measurements that would otherwise not be possible,” says Eberhard Bodenschatz, director at MPI-DS, explaining the special feature of the research facility. “We can better understand how turbulent flows really behave and develop new models on this basis,” he continues. For instance, these experiments can contribute to a better understanding of turbulence in engineered flows or the atmosphere. There, the effect of turbulence is one of the largest uncertainty factors in modern climate models and weather forecasting.

Wissenschaftliche Ansprechpartner:

Prof. Eberhard Bodenschatz (eberhard.bodenschatz@ds.mpg.de)

Originalpublikation:

Christian Küchler, Gregory P. Bewley, and Eberhard Bodenschatz, “Universal velocity statistics in decaying turbulence”, Phys. Rev. Lett. 131 (2023) 024001, DOI 10.1103/PhysRevLett.131.024001

Weitere Informationen:

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.131.024001
https://www.ds.mpg.de/4010565/230706_turbulence

Media Contact

Dr. Guido Schriever Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Dynamik und Selbstorganisation

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

A 2D device for quantum cooling

EPFL engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle…

Single atoms show their true color

One of the challenges of cramming smarter and more powerful electronics into ever-shrinking devices is developing the tools and techniques to analyze the materials that make them up with increasingly…

Key Cells for Blood Sugar Control Using Optogenetics

How does our body control blood sugar so precisely? An international team led by Prof. Nikolay Ninov at the Center for Regenerative Therapies Dresden (CRTD), part of Dresden University of…

Partners & Sponsors