A motion freezer for many particles

Light is modified and turned into the optimal waveform to reduce the speed of particles.
Credit: TU Wien

Tailor-made laser light fields can be used to slow down the movement of several particles and thus cool them down to extremely low temperatures – as shown by a team from TU Wien.

Using lasers to slow down atoms is a technique that has been used for a long time already: If one wants to achieve low-temperature world records in the range of absolute temperature zero, one resorts to laser cooling, in which energy is extracted from the atoms with a suitable laser beam.

Recently, such techniques have also been applied to small particles in the nano- and micro-metre range. This already works quite well for individual particles – but if you want to cool several particles at once, the problem turns out to be much more difficult. Prof. Stefan Rotter and his team at the Institute of Theoretical Physics at TU Wien have now presented a method with which extremely effective cooling can also be achieved in this case.

Not just a beam, but a whole light pattern

“In laser cooling of atoms, one uses only an ordinary laser beam. However, this approach does not work for cooling nano-particles. Our trick now is to continuously adapt the spatial structure of the laser beam to the particle motion in such a way that optimal cooling is implemented at every point in time,” says Stefan Rotter. “With the method we have developed, you can very quickly calculate how this light pattern must look like. While the particles change their positions, you continuously adjust the light pattern and can thus continuously decelerate the particles,” adds Jakob Hüpfl, who is researching this topic as part of his doctoral thesis.

Interestingly, to use the new method, you don’t need to know where the particles are located – you don’t even need to know how many particles there are and how they move. You simply send light through the system and measure how this light is changed by the particles. From this, the optimal light pattern is determined with which the particles must be irradiated at the next moment in order to slow them down a bit more – until their movement finally “freezes”. So far, this is only theoretical work, but experiments are already underway.

Journal: Physical Review Letters
DOI: 10.1103/PhysRevLett.130.083203
Article Title: Optimal Cooling of Multiple Levitated Particles through Far-Field Wavefront Shaping
Article Publication Date: 22-Feb-2023

Media Contact

Florian Aigner
Vienna University of Technology
pr@tuwien.ac.at
Office: 0043-158-801 x41027

Expert Contact

Prof. Stefan Rotter
TU Wien
stefan.rotter@tuwien.ac.at
Cell: +43 1 58801 13618

www.tuwien.ac.at

Media Contact

Florian Aigner
Vienna University of Technology

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

Innovative 3D printed scaffolds offer new hope for bone healing

Researchers at the Institute for Bioengineering of Catalonia have developed novel 3D printed PLA-CaP scaffolds that promote blood vessel formation, ensuring better healing and regeneration of bone tissue. Bone is…

The surprising role of gut infection in Alzheimer’s disease

ASU- and Banner Alzheimer’s Institute-led study implicates link between a common virus and the disease, which travels from the gut to the brain and may be a target for antiviral…

Molecular gardening: New enzymes discovered for protein modification pruning

How deubiquitinases USP53 and USP54 cleave long polyubiquitin chains and how the former is linked to liver disease in children. Deubiquitinases (DUBs) are enzymes used by cells to trim protein…