A sharper view of the Milky Way

Large-scale map (330,000 light years side length) of the density of the 217 million stars from the Gaia DR3 XP sample in Galactocentric Cartesian co-ordinates.
(c) F. Anders / Universitat de Barcelona

…with Gaia and machine learning.

A group of scientists led by the Leibniz Institute for Astrophysics Potsdam (AIP) and the Institute of Cosmos Sciences at the University of Barcelona (ICCUB) have used a novel machine learning model to process data for 217 million stars observed by the Gaia mission in an extremely efficient way. The results are competitive with traditional methods used to estimate stellar parameters. This new approach opens up exciting opportunities to map characteristics like interstellar extinction and metallicity across the Milky Way, aiding in the understanding of stellar populations and the structure of our galaxy.

With the third data release of the European Space Agency’s Gaia space mission, astronomers gained access to improved measurements for 1.8 billion stars, which provides a vast amount of data for researching the Milky Way. However, analysing such a large dataset efficiently presents challenges. In the now published study, researchers explored the use of machine learning to estimate key stellar properties using Gaia’s spectrophotometric data. The model was trained on high-quality data from 8 million stars and achieved reliable predictions with small uncertainties.
“The underlying technique, called extreme gradient-boosted trees allows to estimate precise stellar properties, such as temperature, chemical composition, and interstellar dust obscuration, with unprecedented efficiency. The developed machine learning model, SHBoost, completes its tasks, including model training and prediction, within four hours on a single GPU – a process that previously required two weeks and 3000 high-performance processors,” says Arman Khalatyan from AIP and first author of the study. “The machine-learning method is thus significantly reducing computational time, energy consumption, and CO2 emission.” This is the first time such a technique was successfully applied to stars of all types at once.

The model trains on high-quality spectroscopic data from smaller stellar surveys and then applies this learning to Gaia’s large third data release (DR3), extracting key stellar parameters using only photometric and astrometric data, as well as the Gaia low-resolution XP spectra. “The high quality of the results reduces the need for additional resource-intensive spectroscopic observations when looking for good candidates to be picked-up for further studies, such as rare metal-poor or super-metal rich stars, crucial for understanding the earliest phases of the Milky Way formation”, says Cristina Chiappini from AIP. This technique turns out to be crucial for the preparation of future observations with multi-object spectroscopy, such as 4MIDABLE-LR, a large survey of the Galactic Disc and Bulge that will be part of the 4MOST project at the European Southern Observatory (ESO) in Chile.

“The new model approach provides extensive maps of the Milky Way’s overall chemical composition, corroborating the distribution of young and old stars. The data shows the concentration of metal-rich stars in the Galaxy’s inner regions, including the bar and bulge, with an enormous statistical power.“ adds Friedrich Anders from ICCUB.

The team also used the model to map young, massive hot stars throughout the Galaxy, highlighting distant poorly studied regions in which stars are forming. The data also reveal that there exist a number of “stellar voids” in our Milky Way, i.e. areas that host very few young stars. Furthermore, the data demonstrate where the three-dimensional distribution of interstellar dust is still poorly resolved.

As Gaia continues to collect data, the ability of machine-learning models to handle the vast datasets quickly and sustainably makes them an essential tool for future astronomical research. The success of the approach demonstrates the potential for machine learning to revolutionise big data analysis in astronomy and other scientific fields while promoting more sustainable research practices.

Wissenschaftliche Ansprechpartner:

Dr. Arman Khalatyan, +49 331 7499 528, akhalatyan@aip.de
Dr. Friedrich Anders, fanders@icc.ub.edu
Dr. Cristina Chiappini, +49 331 7499 454, cristina.chiappini@aip.de

Originalpublikation:

https://www.aanda.org/component/article?access=doi&doi=10.1051/0004-6361/202…
doi:10.1051/0004-6361/202451427
https://arxiv.org/abs/2407.06963, doi:10.48550/arXiv.2407.06963

Weitere Informationen:

https://www.aip.de/en/news/milky-way-gaia-machine-learning/

Media Contact

Dr. Janine Fohlmeister Presse- und Öffentlichkeitsarbeit
Leibniz-Institut für Astrophysik Potsdam

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

First-of-its-kind study uses remote sensing to monitor plastic debris in rivers and lakes

Remote sensing creates a cost-effective solution to monitoring plastic pollution. A first-of-its-kind study from researchers at the University of Minnesota Twin Cities shows how remote sensing can help monitor and…

Laser-based artificial neuron mimics nerve cell functions at lightning speed

With a processing speed a billion times faster than nature, chip-based laser neuron could help advance AI tasks such as pattern recognition and sequence prediction. Researchers have developed a laser-based…

Optimising the processing of plastic waste

Just one look in the yellow bin reveals a colourful jumble of different types of plastic. However, the purer and more uniform plastic waste is, the easier it is to…