Better microring sensors for optical applications
Despite the variety of schemes used for optical sensing, they all share the same principle: The quantity to be measured must leave a “fingerprint” on the optical response of the system. The fingerprint can be its transmission, reflection or absorption. The stronger these effects are, the stronger the response of the system.
While this works well at the macroscopic level, measuring tiny, microscopic quantities that induce weak response is a challenging task. Researchers have developed techniques to overcome this difficulty and improve the sensitivity of their devices. Some of these techniques, which rely on complex quantum optics concepts and implementations, have indeed proved useful, such as in sensing gravitational waves in the LIGO project. Others, which are based on trapping light in tiny boxes called optical resonators, have succeeded in detecting micro-particles and relatively large biological components.
Nonetheless, the ability to detect small nano-particles and eventually single molecules remains a challenge. Current attempts focus on a special type of light trapping devices called microring or microtoroid resonators — these enhance the interaction between light and the molecule to be detected. The sensitivity of these devices, however, is limited by their fundamental physics.
In their article “Sensing with Exceptional Surfaces in Order to Combine Sensitivity with Robustness” published in Physical Review Letters (DOI: https:/
Exceptional Points for Exceptionally Sensitive Detection
In order to understand the meaning of exceptional points, consider an imaginary violin with only two strings. In general, such a violin can produce just two different tones — a situation that corresponds to a conventional optical resonator. If the vibration of one string can alter the vibration of the other string in a way that the sound and the elastic oscillations create only one tone and one collective string motion, the system has an exceptional point.
A physical system that exhibits an exceptional point is very fragile. In other words, any small perturbation will dramatically alter its behavior. The feature makes the system highly sensitive to tiny signals.
“Despite this promise, the same enhanced sensitivity of exceptional point-based sensors is also their Achilles heel: These devices are very sensitive to unavoidable fabrication errors and undesired environmental variations,” said Ramy El-Ganainy, associate professor of physics, adding that the sensitivity necessitated clever tuning tricks in previous experimental demonstrations.
“Our current proposal alleviates most of these problems by introducing a new system that has the same enhanced sensitivity reported in previous work, while at the same time robust against the majority of the uncontrivable experimental uncertainty,” said Qi Zhong, lead author on the paper and a graduate student who is currently working towards his doctorate degree at Michigan Tech.
Though the design of microring sensors continues to be refined, researchers are hopeful that by improving the devices, seemingly tiny optical observations will have large effects.
Media Contact
More Information:
http://dx.doi.org/10.1103/PhysRevLett.122.153902All latest news from the category: Physics and Astronomy
This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.
innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.
Newest articles
Pinpointing hydrogen isotopes in titanium hydride nanofilms
Although it is the smallest and lightest atom, hydrogen can have a big impact by infiltrating other materials and affecting their properties, such as superconductivity and metal-insulator-transitions. Now, researchers from…
A new way of entangling light and sound
For a wide variety of emerging quantum technologies, such as secure quantum communications and quantum computing, quantum entanglement is a prerequisite. Scientists at the Max-Planck-Institute for the Science of Light…
Telescope for NASA’s Roman Mission complete, delivered to Goddard
NASA’s Nancy Grace Roman Space Telescope is one giant step closer to unlocking the mysteries of the universe. The mission has now received its final major delivery: the Optical Telescope…