Brave new World: Insight into Munich’s laser physics
Research objectives of the Cluster of Excellence MAP, which is financed by the Deutsche Forschungsgemeinschaft, are more powerful lasers with higher intensities and shorter pulses. With the help of these lasers it is possible to show structures of complex biomolecules, arthritically modified cartilages at a very early stage and tiniest tumors. Besides tumor diagnosis, tumor therapy is an important long-term objective on which physicists and medical scientists jointly research.
The power enhancement of the lasers demands special amplifier techniques and – above all – special mirrors which have not been on the market yet. In the MAP Service Centre scientists produce chirped mirrors, as they are called: Custom-made mirrors for every wavelength and every research problem. The production requires extensive experimental and computational efforts, which sometimes take several days.
The modern research lasers are strong enough to generate and accelerate particles such as ions and electrons. This is the second main area of the MAP Service Centre: As the only team in the world they produce razor-thin carbon foils of atoms in a diamond-like structure. If an intense laser pulse strikes such a foil it separates the atoms in faster electrons and heavier and thus slower ions. These particles are driven by light pressure and automatically align in single pulses. For these two main areas the MAP Service Centre received the award Selected Landmark 2011.
Visitors may obtain more detailed information at two public talks of MAP scientists at the Application Panel, which takes place on May 24 at 2-4:30 pm. Dr. Ronald Sroka organizes the Application Panel and will give an overview on modern applications of lasers in medicine. Prof. Jan Wilkens, a medical physicist at Klinikum rechts der Isar, will explain his vision of a combined and compact device for the diagnosis and therapy of tumors and how all this will finally be within reach with the help of laser-plasma acceleration. Dr. Martin Bech, who works with the Chair of Biomedical Physics at the Technische Universität München (TUM) will show stunning images generated by the group of Prof. Franz Pfeiffer with the phase-contrast and the dark-field techniques over the last few years.
As usual, the World of Photonics Congress will offer an excursion to different laser laboratories in Munich. This year, laboratories of the Ludwig-Maximilians-Universität München (LMU) at the Research Campus in Garching are for the first time open on May 27. Participants may gain an insight into some research projects of the Cluster of Excellence for they will not only be able to see the mirror production but also two laser labs with ultrafast single electron diffraction and ultrafast photo emission spectroscopy.
As a common project of LMU Munich and TUM the Centre for Advanced Laser Applications (CALA) is being built at the Research Campus in Garching.
CALA is based on the research results of the Cluster of Excellence “Munich-Centre for Advanced Photonics” (MAP), but will further develop the laser driven brilliant sources for X-ray and particle beams and research on their possible use in biomedical applications. The emphasis will be on biomedical imaging with X-ray beams for the early detection of cancer and local tumor therapy with laser-generated proton and carbon ion beams. A further research focus is the ultrafast radiation biology with the goal to better understand and optimize the primarily processes of the therapy with ion beams.
Media Contact
More Information:
http://www.munich-photonics.deAll latest news from the category: Physics and Astronomy
This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.
innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.
Newest articles
Innovative 3D printed scaffolds offer new hope for bone healing
Researchers at the Institute for Bioengineering of Catalonia have developed novel 3D printed PLA-CaP scaffolds that promote blood vessel formation, ensuring better healing and regeneration of bone tissue. Bone is…
The surprising role of gut infection in Alzheimer’s disease
ASU- and Banner Alzheimer’s Institute-led study implicates link between a common virus and the disease, which travels from the gut to the brain and may be a target for antiviral…
Molecular gardening: New enzymes discovered for protein modification pruning
How deubiquitinases USP53 and USP54 cleave long polyubiquitin chains and how the former is linked to liver disease in children. Deubiquitinases (DUBs) are enzymes used by cells to trim protein…