Breakthrough in photonic time crystals
… could change how we use and control light.
The new discovery could dramatically enhance technologies like lasers, sensors and optical computing in the near future.
An international research team has for the first time designed realistic photonic time crystals –– exotic materials that exponentially amplify light. The breakthrough opens up exciting possibilities across fields such as communication, imaging and sensing by laying the foundations for faster and more compact lasers, sensors and other optical devices.
“This work could lead to the first experimental realization of photonic time crystals, propelling them into practical applications and potentially transforming industries. From high-efficiency light amplifiers and advanced sensors to innovative laser technologies, this research challenges the boundaries of how we can control the light-matter interaction,” says Assistant Professor Viktar Asadchy from Aalto University, Finland.
Photonic time crystals represent a unique class of optical materials. Unlike traditional crystals, which have spatially repeating structures, photonic time crystals remain uniform in space but exhibit a periodic oscillation in time. This distinctive quality creates “momentum band gaps,” or unusual states where light pauses inside the crystal while its intensity grows exponentially over time. To grasp the peculiarity of light’s interaction within a photonic time crystal, imagine light traversing a medium that switches between air and water quadrillions of times per second –– a remarkable phenomenon that challenges our conventional understanding of optics.
One potential application for the photonic time crystals is in nanosensing.
“Imagine we want to detect the presence of a small particle, such as a virus, pollutant, or biomarker for diseases like cancer. When excited, the particle would emit a tiny amount of light at a specific wavelength. A photonic time crystal can capture this light and automatically amplify it, enabling more efficient detection with existing equipment,” says Asadchy.
Creating photonic time crystals for visible light has long been challenging due to the need for extremely rapid yet simultaneously large-amplitude variation of material properties. To date, the most advanced experimental demonstration of photonic time crystals –– developed by members of the same research team –– has been limited to much lower frequencies, such as microwaves. In their latest work, the team proposes, through theoretical models and electromagnetic simulations, the first practical approach to achieving “truly optical” photonic time crystals. By using an array of tiny silicon spheres, they predict that the special conditions needed to amplify light that were previously out of reach can finally be achieved in the lab using known optical techniques.
The team consisted of researchers from Aalto University, University of Eastern Finland, Karlsruhe Institute of Technology and Harbin Engineering University. The research was published in Nature Photonics on 12 November (10AM GMT).
More information:
Aalto Designer Materials and Devices group
Journal: Nature Photonics
DOI: 10.1038/s41566-024-01563-3
Article Title: Expanding momentum bandgaps in photonic time crystals through resonances
Article Publication Date: 12-Nov-2024
All latest news from the category: Physics and Astronomy
This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.
innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.
Newest articles
New organoid with all key pancreas cells
Researchers from the Organoid group (previously Clevers group) at the Hubrecht Institute have developed a new organoid that mimics the human fetal pancreas, offering a clearer view of its early development….
Tasty, Airy Baked Goods with Culinary Foam made from Peas
Culinary foam made from the whites of chicken eggs makes baked goods light and airy. In the LeguFoam project, Fraunhofer researchers are working on a plant-based alternative made from legumes….
Biohydrogen from Wood Waste
Up to now, wood waste has had to be disposed of at great expense and, at best, has been used to generate energy in incineration plants. Fraunhofer researchers are now…