Breakthrough paves way for photonic sensing at the ultimate quantum limit
Operation of mass manufacturable photonic sensors at the quantum limit could have applications such as greenhouse gas and cancer detection.
Sensors are a constant feature of our everyday lives. Although they often go unperceived, sensors provide critical information essential to modern healthcare, security, and environmental monitoring. Modern cars alone contain over 100 sensors and this number will only increase.
Quantum sensing is poised to revolutionise today’s sensors, significantly boosting the performance they can achieve. More precise, faster, and reliable measurements of physical quantities can have a transformative effect on every area of science and technology, including our daily lives.
However, the majority of quantum sensing schemes rely on special entangled or squeezed states of light or matter that are hard to generate and detect. This is a major obstacle to harnessing the full power of quantum-limited sensors and deploying them in real-world scenarios.
In a paper published today, a team of physicists at the Universities of Bristol, Bath and Warwick have shown it is possible to perform high precision measurements of important physical properties without the need for sophisticated quantum states of light and detection schemes.
The key to this breakthrough is the use of ring resonators – tiny racetrack structures that guide light in a loop and maximize its interaction with the sample under study. Importantly, ring resonators can be mass manufactured using the same processes as the chips in our computers and smartphones.
Alex Belsley, Quantum Engineering Technology Labs (QET Labs) PhD student and lead author of the work, said: “We are one step closer to all integrated photonic sensors operating at the limits of detection imposed by quantum mechanics.”
Employing this technology to sense absorption or refractive index changes can be used to identify and characterise a wide range of materials and biochemical samples, with topical applications from monitoring greenhouse gases to cancer detection.
Associate Professor Jonathan Matthews, co-Director of QET Labs and co-author of the work, stated: “We are really excited by the opportunities this result enables: we now know how to use mass manufacturable processes to engineer chip scale photonic sensors that operate at the quantum limit.”
Journal: Physical Review Letters
DOI: 10.1103/PhysRevLett.128.230501
Method of Research: Commentary/editorial
Subject of Research: Not applicable
Article Title: Advantage of coherent states in ring resonators over any quantum probe single-pass absorption estimation strategy
Article Publication Date: 6-Jun-2022
Media Contact
Shona East
University of Bristol
shona.east@bristol.ac.uk
Cell: 07971067978
All latest news from the category: Physics and Astronomy
This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.
innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.
Newest articles
Pinpointing hydrogen isotopes in titanium hydride nanofilms
Although it is the smallest and lightest atom, hydrogen can have a big impact by infiltrating other materials and affecting their properties, such as superconductivity and metal-insulator-transitions. Now, researchers from…
A new way of entangling light and sound
For a wide variety of emerging quantum technologies, such as secure quantum communications and quantum computing, quantum entanglement is a prerequisite. Scientists at the Max-Planck-Institute for the Science of Light…
Telescope for NASA’s Roman Mission complete, delivered to Goddard
NASA’s Nancy Grace Roman Space Telescope is one giant step closer to unlocking the mysteries of the universe. The mission has now received its final major delivery: the Optical Telescope…