Counter-rotating fates

Researchers at The University of Tokyo simulate the phase separation of self-spinning particles, and show that the process differs from other unmixing processes, which may shed light on the organization of bacteria and other organisms
Credit: Institute of Industrial Science, The University of Tokyo

As anyone who drinks their coffee with milk knows, it’s much easier to mix liquids together than to separate them. In fact, the second law of thermodynamics would seem to dictate that a mixture would never be able to separate again if there are no attractive forces between similar particles. However, investigators from the Institute of Industrial Science at The University of Tokyo showed the mechanism by which a mixture of actively spinning particles, such as bacteria, in a fluid can sort themselves in a process called phase separation even without attractions between particles.

In a study published recently in Communications Physics, researchers from the Institute of Industrial Science at The University of Tokyo have shown that the demixing behavior of two groups of discs rotating in opposite directions,induced only through self-generated flow, can be explained by turbulent effects.

Sometimes mixed liquids can spontaneously “unmix”, in a process of phase separation, such as oil and water. While systems without external energy input have been studied for a long time, the situation with so-called active matter in which particles expend energy to move autonomously, like bacteria or algae, remains poorly understood.

Now, a team of researchers from The University of Tokyo created a computer simulation of a mixture of discs rotating in opposite directions in a fluid to elucidate this phenomenon. The active motion of bacteria or other living organisms in a straight line that leads to a mixture spontaneously separating is already known as “motility-induced phase separation.” However, active motion can include rotation as well as translation, but the organization of self-spinning particles has been studied much less.

“Active matter serves as a bridge between biological and physical worlds when considering the laws of self-organization,” says the first author of the study, Bhadra Hrishikesh. The researchers found that in the case of self-spinning particles, phase separation creates the largest structure directly from a chaotic state. This is in contrast with ordinary phase separation, in which phase-separated domains grow gradually over time, as we see in salad dressing.

“It was known that a mixture of oppositely rotating disks can undergo phase separation even without a fluid. We were interested in comparing our system—in which the only interactions between particles are carried by the fluid—with a similar driven system without these interactions,” says Hajime Tanaka, senior author.

The investigators found that the sudden phase separation of the discs into regions of clockwise and counterclockwise collections is due to nonlinear turbulent effects. This research may lead to a better understanding of the motion of living organisms and thereby, spontaneous organization of living systems.

The article “Phase separation of rotor mixtures without domain coarsening driven by two-dimensional turbulence” was published in Communications Physics at DOI: 10.1038/s42005-022-01116-6.

 

About Institute of Industrial Science, The University of Tokyo

The Institute of Industrial Science, The University of Tokyo (UTokyo-IIS) is one of the largest university-attached research institutes in Japan. UTokyo-IIS is comprised of over 120 research laboratories—each headed by a faculty member—and has over 1,200 members (approximately 400 staff and 800 students) actively engaged in education and research. Its activities cover almost all areas of engineering. Since its foundation in 1949, UTokyo-IIS has worked to bridge the huge gaps that exist between academic disciplines and real-world applications.

Journal: Communications Physics
DOI: 10.1038/s42005-022-01116-6
Article Title: Phase separation of rotor mixtures without domain coarsening driven by two-dimensional turbulenc
Article Publication Date: 27-Dec-2022

Media Contact

Hajime Tanaka
Institute of Industrial Science, The University of Tokyo
tanaka@iis.u-tokyo.ac.jp
Office: 81-3-5452-6125

Media Contact

Hajime Tanaka
Institute of Industrial Science, The University of Tokyo

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

Swallowing triggers a feeling of elation

Researchers at the University of Bonn and the University of Cambridge have identified an important control circuit involved in the eating process. The study has revealed that fly larvae have…

Mitochondria on the move

Leveraging intercellular mitochondria transfer to boost cancer immunotherapies. An international team of researchers, led by Professor Luca Gattinoni at the Leibniz Institute for Immunotherapy (LIT), has developed an innovative mitochondrial…

EarthCARE’s lidar shows particles in the atmosphere in detail

European measurement campaign atmo4ACTRIS launched. The atmospheric lidar ATLID, the last of four instruments on board the EarthCARE satellite launched in May, has now been successfully put into operation. The…

Partners & Sponsors