Defective graphene has high electrocatalytic activity
Carbon is widely used in electrochemistry. A new type of carbon-based electrodes, made of graphene, has great potential for biosensors, photovoltaics, and electrochemical cells.
For example, chemically modified graphene can be used as a cheap and effective analogue of platinum or iridium catalysts in fuel cells and metal-air batteries.
The electrochemical characteristics of graphene strongly depend on its chemical structure and electronic properties, which have a significant impact on the kinetics of redox processes.
The interest in studying the kinetics of heterogeneous electron transfer on the graphene surface has recently been stimulated by new experimental data showing the possibility of accelerating the transfer at structural defects, such as vacancies, graphene edges, impurity heteroatoms, and oxygen-containing functional groups.
A recent paper co-authored by three Russian scientists presents a theoretical study of the kinetics of electron transfer on the surface of graphene with various defects: single and double vacancies, the Stone-Wales defect, nitrogen impurities, epoxy and hydroxyl groups. All these changes significantly affected the transfer rate constant.
The most pronounced effect was associated with a single vacancy: The transfer rate was predicted to grow by an order of magnitude relative to defect-free graphene (fig. 1). This increase should only be observed for redox processes with a standard potential of ?0.2 volts to 0.3 volts — relative to the standard hydrogen electrode.
The calculations also showed that due to the low quantum capacitance of the graphene sheet, the electron transfer kinetics can be controlled by changing the capacitance of the bilayer.
“In our calculations, we tried to establish a relation between the kinetics of heterogeneous electron transfer and the changes in the electronic properties of graphene caused by defects. It turned out that introducing defects into a pristine graphene sheet can lead to an increase in the density of electronic states near the Fermi level and catalyze electron transfer,” said Associate Professor Sergey Kislenko of the Department for Physics of High-Temperature Processes, MIPT.
“Also, depending on the kind of defect, it affects the density of electronic states across various energy regions in different ways. This suggests a possibility for implementing selective electrochemical catalysis. We believe that these effects can be useful for electrochemical sensor applications, and the theoretical apparatus that we are developing can be used for targeted chemical design of new materials for electrochemical applications,” the scientist added.
###
The research reported in this story was supported by the Russian Foundation for Basic Research.
Media Contact
All latest news from the category: Physics and Astronomy
This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.
innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.
Newest articles
NASA: Mystery of life’s handedness deepens
The mystery of why life uses molecules with specific orientations has deepened with a NASA-funded discovery that RNA — a key molecule thought to have potentially held the instructions for…
What are the effects of historic lithium mining on water quality?
Study reveals low levels of common contaminants but high levels of other elements in waters associated with an abandoned lithium mine. Lithium ore and mining waste from a historic lithium…
Quantum-inspired design boosts efficiency of heat-to-electricity conversion
Rice engineers take unconventional route to improving thermophotovoltaic systems. Researchers at Rice University have found a new way to improve a key element of thermophotovoltaic (TPV) systems, which convert heat…