Discovery of a cool super-Earth
Astronomers from the Observatory of the University of Hamburg were involved in the discovery of a new planet. As part of an international research team led by the Institut de Ciències de l'Espai (ICE, CSIC), they have found a planet in orbit of Barnard's star.
Barnard's star is a so-called red dwarf and after the Alpha-Centauri triple stellar system the second closest star to the Sun. As scientists reported in the current issue of Nature, they used astronomical observational data from about 20 years ago and combined it with new measurement data taken with the CARMENES planet-hunter spectrograph at Calar Alto/Spain among others.
The astronomers found significant evidence for a super-Earth with the size of 3.2 Earth masses, orbiting the red dwarf every 233 days. The new planet is at the so-called snowline of the star and is likely to be a frozen world.
Barnard's star is only six light-years from us and its velocity on Earth's night sky is the fastest of all stars which makes it noticeable also by hobby watchers. It is one of the least active red dwarfs known, smaller and with 7-10 billion years older than our Sun (about 4.6 billion years), and represents an ideal target to search for exoplanets.
Since 1997, several instruments gathered a large amount of measurements on the star’s subtle back and forth wobble. An analysis of the data collected up to 2015 suggested the wobble might be caused by a planet with an orbital period of about 230 days.
To confirm this theory, astronomers regularly monitored Barnard’s star using high-precision spectrometer such as the CARMENES planet-hunter spectrograph at the Calar Alto Observatory in Spain. The re-analysis of all 771 measurements detected a clear signal over a period of 233 days. This signal shows that Barnard's star is approaching and descending at about 1.2 meters per second in its shaking motion – which is about the speed of a person's gait. This was the first time that this type of exoplanet could be discovered with the so-called radial velocity method.
This discovery brought in the work of many scientists worldwide. “In Hamburg, we helped to redefine the mass of Barnard's star. Only then the measured speed of 1.2 meters per second can be used to determine the mass of the newly discovered planet,” Andreas Schweitzer adds, co-author of the Hamburg Observatory of the University of Hamburg.
The newly discovered planet is called Barnard's star b (or GJ 699 b). It is a super-Earth, a large extrasolar planet with more than three times the mass of the Earth. He orbits his cool red home star near the so-called snow line – an orbit where water remains frozen. Therefore, in the absence of an atmosphere, the temperature is about -150 ° C, making the presence of liquid water on its surface unlikely.
“The discovery of a planet in our immediate neighborhood is a great motivation to continue to search for exoplanets surrounding neighboring stars and one day actually find a planet on which life would be possible,” explains Andreas Schweitzer.
Original publication
I. Ribas, M. Tuomi, A. Reiners, R. P. Butler, J. C. Morales, M. Perger, S. Dreizler, C. RodrÃguez-López, J. I. González Hernández, A. Rosich, F. Feng, T. Trifonov, S. S. Vogt, J. A. Caballero, A. Hatzes, E. Herrero, S. V. Jeffers, M. Lafarga, F. Murgas, R. P. Nelson, E. RodrÃguez, J. B. P. Strachan, L. Tal-Or, J. Teske, B. Toledo-Padrón, M. Zechmeister, A. Quirrenbach, P. J. Amado, M. Azzaro, V. J. S. Béjar, J. R. Barnes, Z. M. Berdiñas, J. Burt, G. Coleman, M. Cortés-Contreras, J. Crane, S. G. Engle, E. F. Guinan, C. A. Haswell, Th. Henning, B. Holden, J. Jenkins, H. R. A. Jones, A. Kaminski, M. Kiraga, M. Kürster, M. H. Lee, M. J. López-González, D. Montes, J. Morin, A. Ofir, E. Pallé, R. Rebolo, S. Reffert, A. Schweitzer, W. Seifert, S. A. Shectman, D. Staab, R. A. Street, A. Suárez Mascareño, Y. Tsapras, S. X. Wang, G. Anglada-Escudé, A super-Earth planet candidate orbiting at the snow-line of Barnard’s star, Nature (2018).
https://www.nature.com/articles/s41586-018-0677-y
The radial velocity method
Precision spectrometers measuring the Doppler effect were used for the researches. The Doppler effect is a temporal compression or elongation of a signal with changes in the distance between transmitter and receiver. In everyday life, one knows the phenomenon that an approaching car sounds different than a departing vehicle. Now, if a stellar object moves away from the earth, the observed light becomes slightly less energetic and therefore redder. The light becomes energy-rich and blue as the star moves towards the Earth.
For more information
Hamburg Observatory of the University of Hamburg: https://www.hs.uni-hamburg.de
Contact:
Andreas Schweitzer
Hamburg Observatory
University of Hamburg
Phone: +49 40 42838-8416
Email: aschweitzer@hs.uni-hamburg.de
Heiko Fuchs
University of Hamburg
Faculty of Mathematics, Informatics and Natural Sciences
Office of the dean
Phone: +49 40 42838-7193
Email: heiko.fuchs@uni-hamburg.de
Andreas Schweitzer
Hamburg Observatory
University of Hamburg
Phone: +49 40 42838-8416
Email: aschweitzer@hs.uni-hamburg.de
A super-Earth planet candidate orbiting at the snow-line of Barnard’s star, Nature (2018).
Media Contact
All latest news from the category: Physics and Astronomy
This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.
innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.
Newest articles
First-of-its-kind study uses remote sensing to monitor plastic debris in rivers and lakes
Remote sensing creates a cost-effective solution to monitoring plastic pollution. A first-of-its-kind study from researchers at the University of Minnesota Twin Cities shows how remote sensing can help monitor and…
Laser-based artificial neuron mimics nerve cell functions at lightning speed
With a processing speed a billion times faster than nature, chip-based laser neuron could help advance AI tasks such as pattern recognition and sequence prediction. Researchers have developed a laser-based…
Optimising the processing of plastic waste
Just one look in the yellow bin reveals a colourful jumble of different types of plastic. However, the purer and more uniform plastic waste is, the easier it is to…