Emergent resistance network suggests mechanism for colossal magnetoresistance
Research by scientists at Stanford University and RIKEN has revealed new clues on the microscopic processes by which resistance in certain materials is dramatically altered by the presence of magnetic fields. Reported in Science, the discovery provides fundamental insights toward the development of radically new memory and switching devices.
Colossal magnetoresistance (CMR), a phenomenon in which enormous variations in resistance are produced by small magnetic field changes, has attracted attention as a means to develop low-power, more compact alternatives to conventional circuits. Unlike semiconductors such as silicon, electrons in the manganites and other transition metal oxides in which CMR occurs interact strongly with each other, held in place by a lattice that constrains their movement. CMR is triggered when a strong magnetic field induces such materials to tip from a charge-ordered insulating phase into a ferromagnetic metallic phase, drastically altering the material’s properties.
An earlier technique developed by the team was successful in producing manganite films only a few dozen nanometers thick capable of undergoing this transition from insulating to metallic phase. To explore the mechanisms underlying this transition, the researchers adapted a microwave impedance microscope to withstand cryogenic temperatures and extreme magnetic fields. Using this microscope, they discovered that under a powerful 9 tesla magnetic field, filamentary metallic domains emerge in the manganite films, forming an interconnected network aligned along the axes of the film substrate.
The first ever evidence of a microscopic mechanism for CMR, the discovery of this network greatly enhances our understanding of microscopic phase transitions in thin film manganites. It also marks a major advance in the race toward new memory and switching devices, whose impact promises to revolutionize computing technology.
For more information, please contact:
Dr. Masashi Kawasaki
Dr. Masao Nakamura
Functional Superstructure Team, Emergent Materials Department
RIKEN Advanced Science Institute
Tel: +81-(0)48-467-1111 (ex. 6323) / Fax: +81-(0)48-467-4703
Ms. Tomoko Ikawa (PI officer)
Global Relations Office
RIKEN
Tel: +81-(0)48-462-1225 / Fax: +81-(0)48-462-4715
Email: koho@riken.jp
Media Contact
All latest news from the category: Physics and Astronomy
This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.
innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.
Newest articles
AI to improve brain cancer diagnosis, monitoring, treatment
Recommendations published in The Lancet Oncology call for good clinical practice of new technologies to modernize decades-old standard of care for brain cancer patients. An international, multidisciplinary team of leading…
AI tool ‘sees’ cancer gene signatures in biopsy images
AI tool reads biopsy images… To determine the type and severity of a cancer, pathologists typically analyze thin slices of a tumor biopsy under a microscope. But to figure out…
Skull bone marrow expands throughout life
…and remains healthy during aging. Blood vessels and stromal cells in the bone marrow create an ideal environment for hematopoietic stem cells to continuously produce all blood cells. During aging,…