Energy transmission in quantum field theory requires information
An international team of researchers has found a surprisingly simple relationship between the rates of energy and information transmission across an interface connecting two quantum field theories. Their work was published in Physical Review Letters on August 30.
The interface between different quantum field theories is an important concept that arises in a variety of problems in particle physics and condensed matter physics. However, it has been difficult to calculate the transmission rates of energy and information across interfaces.
Hirosi Ooguri, Professor at the Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU, WPI) at the University of Tokyo and Fred Kavli Professor at the California Institute of Technology, together with his collaborators, Associate Professor Yuya Kusuki at Kyushu University, and Professor Andreas Karch and graduate students Hao-Yu Sun and Mianqi Wang at the University of Texas, Austin, showed that for theories in two dimensions with scale invariance there are simple and universal inequalities between three quantities: Energy transfer rate, Information transfer rate, and the size of Hilbert space (measured by the rate of increase of the number of states at high energy). Namely,
[ energy transmittance ] ≤ [ information transmittance] ≤ [ size of the Hilbert space ].
These inequalities imply that, in order to transmit energy, information must also be transmitted, and both require a sufficient number of states. They also showed that no stronger inequality is possible.
Both energy and information transmissions are important quantities, but they are difficult to calculate, and no relationship between them was known. By showing the inequality between these quantities, this paper sheds new light on this important but difficult problem.
Journal: Physical Review Letters
DOI: 10.1103/PhysRevLett.133.091604
Article Title: Universal bound on effective central charge and its saturation
Media Contact
Motoko Kakubayashi
Kavli Institute for the Physics and Mathematics of the Universe
motoko.kakubayashi@ipmu.jp
Office: 0081-471-365-980
Original Source
Media Contact
All latest news from the category: Physics and Astronomy
This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.
innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.
Newest articles
Breakthrough in magnetism that could transform quantum computing and superconductors
Researchers discover new magnetic and electronic properties in kagome magnet thin films. A discovery by Rice University physicists and collaborators is unlocking a new understanding of magnetism and electronic interactions…
NASA to launch innovative solar coronagraph to Space Station
NASA’s Coronal Diagnostic Experiment (CODEX) is ready to launch to the International Space Station to reveal new details about the solar wind including its origin and its evolution. Launching in…
Boosting efficiency in mining with AI and automation
“Doing instead of procrastinating”. This is the AI strategy presented by Prof. Constantin Haefner, Director of the Fraunhofer Institute for Laser Technology ILT, at the “AKL’24 – International Laser Technology…