Experimentally Identifying Effective Theories in Many-Body Systems
One goal of science is to find physical descriptions of nature by studying how basic system components interact with one another. For complex many-body systems, effective theories are frequently used to this end.
They allow describing the interactions without having to observe a system on the smallest of scales. Physicists at Heidelberg University have now developed a new method that makes it possible to identify such theories experimentally with the aid of so-called quantum simulators.
The results of the research effort, led by Prof. Dr Markus Oberthaler (experimental physics) and Prof. Dr Jürgen Berges (theoretical physics), were published in the journal “Nature Physics”.
Deriving predictions about physical phenomena at the level of individual particles from a microscopic description is practically impossible for large systems.
This applies not only to quantum mechanical many-body systems, but also to classical physics, such as when heated water in a cooking pot needs to be described at the level of the individual water molecules.
But if a system is observed on large scales, like water waves in a pot, new properties can become relevant under certain preconditions. To describe such physics efficiently, effective theories are used.
“Our research aimed to identify these theories in experiments with the help of quantum simulators,” explains Torsten Zache, the primary author of the theoretical portion of the study. Quantum simulators are used to modify many-body systems more simply and to calculate their properties.
The Heidelberg physicists recently demonstrated their newly developed method in an experiment on ultracold rubidium atoms, which are captured in an optical trap and brought out of equilibrium.
“In the scenario we prepared, the atoms behave like tiny magnets whose orientation we are able to precisely read out using new processes,” according to Maximilian Prüfer, the primary author on the experimental side of the study.
To determine the effective interactions of these “magnets”, the experiment has to be repeated several thousand times, which requires extreme stability.
“The underlying theoretical concepts allow us to interpret the experimental results in a completely new way and thereby gain insights through experiments into areas that have thus far been inaccessible through theory,” points out Prof. Oberthaler. “In turn, this can tell us about new types of theoretical approaches to successfully describe the relevant physical laws in complex many-body systems,” states Prof. Berges.
The approach used by the Heidelberg physicists is transferrable to a number of other systems, thus opening groundbreaking territory for quantum simulations. Jürgen Berges and Markus Oberthaler are confident that this new way of identifying effective theories will make it possible to answer fundamental questions in physics.
The research work was conducted under the auspices of the “Isolated Quantum Systems and Universality In Extreme Conditions” Collaborative Research Centre (ISOQUANT) of Heidelberg University. It is also part of the “Entanglement Generation in Universal Time Dynamics” project, for which Prof. Oberthaler received an ERC Advanced Grant from the European Research Council (ERC).
Original publications:
Contact:
Heidelberg University
Communications and Marketing
Press Office, phone +49 6221 54-2311
presse@rektorat.uni-heidelberg.de
Prof. Dr Markus Oberthaler
Kirchhoff Institute for Physics
Phone +49 6221 54-5170
markus.oberthaler@kip.uni-heidelberg.de
M. Prüfer, T.V. Zache, P. Kunkel, S. Lannig, A. Bonnin, H. Strobel, J. Berges, and M.K. Oberthaler: Experimental extraction of the quantum effective action for a non-equilibrium many-body system. Nature Physics (published online 15 June 2020), doi: 10.1038/s41567-020-0933-6
http://www.kip.uni-heidelberg.de/matterwave
http://www.thphys.uni-heidelberg.de/~berges
Media Contact
All latest news from the category: Physics and Astronomy
This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.
innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.
Newest articles
Pinpointing hydrogen isotopes in titanium hydride nanofilms
Although it is the smallest and lightest atom, hydrogen can have a big impact by infiltrating other materials and affecting their properties, such as superconductivity and metal-insulator-transitions. Now, researchers from…
A new way of entangling light and sound
For a wide variety of emerging quantum technologies, such as secure quantum communications and quantum computing, quantum entanglement is a prerequisite. Scientists at the Max-Planck-Institute for the Science of Light…
Telescope for NASA’s Roman Mission complete, delivered to Goddard
NASA’s Nancy Grace Roman Space Telescope is one giant step closer to unlocking the mysteries of the universe. The mission has now received its final major delivery: the Optical Telescope…