Functional surface refinement

Dynamics of the molecular precursor in the nanochannel during the MOCVD process (left in the picture) and typical SEM cross-sectional view of the nanostructured silicon matrix after coating (right in the picture).
Credit: Leibniz-Institut für Photonische Technologien e. V.

Targeted control of growth dynamics of finest tin layers.

Nanometer-scale coatings with functional materials play an important role in many sensory, electronic and photonic applications. An international team of researchers – coordinated by Leibniz IPHT in Jena, Germany – has succeeded for the first time in observing novel growth effects of tin coatings on silicon nanometer-structured surfaces. With the knowledge gained, the chemical composition of deposited thin films can be precisely controlled and monitored in the future, opening up new applications in the fields of biophotonics, energy generation or mobility. The results were published in the journal Small.

Tin-containing layers are in demand for a wide variety of electronic parts and components in the electrical industry as well as in sensor technology or photovoltaics. Researchers from the Leibniz Institute of Photonic Technology (Leibniz IPHT) investigated the development process of nanoscale tin layers together with scientists from Germany, Russia and Great Britain and summarized their results in the renowned journal Small.

The starting material for the observed growth processes of tin-containing thin films are ultra-thin silicon-based structures in the form of nanowires with a diameter of less than 100 nanometers. In experimental studies, the researchers were able to demonstrate for the first time a specific distribution effect of tin along these silicon nanostructures: Tin-containing layers with different degrees of oxidation were formed along the entire length of the semiconductor nanowires by means of metal-organic chemical vapour deposition at a deposition temperature of 600 degrees Celsius.

“By understanding how tin coatings grow and which factors influence this growth process, we create the conditions for specifically controlling coating processes. This allows surfaces to be refined very precisely and to be equipped with desired functional properties at previously defined positions,” explains Dr. Vladimir Sivakov, head of the Silicon Nanostructures Group at Leibniz IPHT, who investigated and discovered the growth mechanisms together with his team.

Applications of ultra-thin tin layers

Nanometer-thin coatings with tin enable specific optical and electrical properties and allow, among other things, to further improve the research and development of optical and biophotonic methods. Tin layers can be used as UV-SERS-active surfaces in surface-enhanced Raman scattering (SERS) spectroscopy, which can be applied to determine the molecular fingerprint of biological samples using SERS-active metal nanostructures. In addition, there are areas of application in gas sensors in which tin reacts to gases as a highly sensitive layer. Application scenarios in high-performance lithium-ion batteries for electromobility and thermal energy storage are also conceivable, in which tin-coated anodes ensure high electronic conductivity.

Mechanisms and growth dynamics of tin-containing layers

The researchers investigated the growth dynamics of the observed tin-based layers on nanostructured surfaces using microscopic and spectroscopic methods. In contrast to planar and unstructured silicon surfaces, on which the deposition took place homogeneously, the surfaces of the semiconductor nanowires were covered with tin-containing crystals of different sizes and shapes over the entire length.

The results presented in the journal Small show the formation of different tin oxide phases along the nanostructured silicon surfaces, which could be identified with tin dioxide (SnO₂) in the upper part, tin monoxide (SnO) in the middle part and with metallic tin (Sn) in the lower part.

The amount and distribution of the formed metallic Sn and its SnO and SnO₂ oxides can be explained and effectively controlled by the length, diameter, porosity, and spacing of the silicon-based semiconductor nanostructures. In addition to these geometrical parameters, the researchers were able to reveal the formation of hydrocarbon-containing by-products as reducing agents for tin oxide reduction as another factor influencing the distribution of the formed tin layers along the semiconductor nanostructures. The thermal conductivity of the silicon structures and thus the temperature distribution along the nanowires during the high-temperature vapour deposition can also have an influence on the formation of different tin oxide phases.

The project “Development and atomic and electronic structure characterization of functional Sn/SnOx surfaces for SERS-based analysis of misfolded proteins” 448666227 (SI1893/27-1) was funded by the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG).

About Leibniz Institute of Photonic Technology

Light is at the center of research at Leibniz IPHT. Scientists are researching innovative photonic processes and tools for use in clinical diagnostics, such as infection and cancer diagnostics, pharmacy, and process control, as well as food and environmental safety. An essential aim is to accelerate translation: the translation of research results into practice – from Ideas to Instruments. https://www.leibniz-ipht.de/

Wissenschaftliche Ansprechpartner:

Dr. Vladimir Sivakov
Head of the Work Group Silicon Nanostructures at Leibniz IPHT
Phone: +49 (0) 3641 · 206-440
E-Mail: vladimir.sivakov@leibniz-ipht.de

Originalpublikation:

S. Turishchev, A. Schleusener, O. Chuvenkova, E. Parinova, P. Liu, M. Manyakin, S. Kurganskii, V. Sivakov, Spectromicroscopy Studies of Silicon Nanowires Array Covered by Tin Oxide Layers, Small, Volume 19, Issue 10, 2023,
https://doi.org/10.1002/smll.202206322

P. Liu, A. Schleusener, G. Zieger, A. Bochmann, M. A. van Spronsen, V. Sivakov, Nanostructured Silicon Matrix for Materials Engineering, Small, Volume 19, Issue 12, 2023,
https://doi.org/10.1002/smll.202206318

Functional surface refinement: Targeted control of growth dynamics of finest tin layers

Media Contact

Stefanie Miethbauer Presse- und Öffentlichkeitsarbeit
Leibniz-Institut für Photonische Technologien e. V.

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

Innovative 3D printed scaffolds offer new hope for bone healing

Researchers at the Institute for Bioengineering of Catalonia have developed novel 3D printed PLA-CaP scaffolds that promote blood vessel formation, ensuring better healing and regeneration of bone tissue. Bone is…

The surprising role of gut infection in Alzheimer’s disease

ASU- and Banner Alzheimer’s Institute-led study implicates link between a common virus and the disease, which travels from the gut to the brain and may be a target for antiviral…

Molecular gardening: New enzymes discovered for protein modification pruning

How deubiquitinases USP53 and USP54 cleave long polyubiquitin chains and how the former is linked to liver disease in children. Deubiquitinases (DUBs) are enzymes used by cells to trim protein…