Microscopic color converters move small laser-based devices closer to reality

Tiny crystals made from the 2D material molybdenum disulfide (MoS2) can efficiently change the color of light, which could help researchers shrink laser-based devices to microscopic scales
Credit: Nicoletta Barolini, Columbia University

Lasers are everywhere. Devices that use them transmit information and enable the existence of long-distance communications and the internet; they aid doctors performing surgeries and engineers manufacturing advanced tools and technologies; and day-to-day, we encounter lasers as we scan our groceries and watch DVDs. “In the 60-some years since they were invented, lasers have absolutely transformed our lives,” said Giulio Cerullo, a nonlinear optics researcher at Politecnico di Milano in Italy.

Today, with the help of new research from Cerullo and collaborators at Columbia University published in Nature Photonics, devices that use lasers are poised to become a whole lot smaller.

Working in engineer James Schuck’s lab at Columbia, PhD student Xinyi Xu and postdoc Chiara Trovatello studied a 2D material called molybdenum disulfide (MoS2). They characterized how efficiently devices built from stacks of MoS2 less than one micron thick—that’s 100 times thinner than a human hair—convert light frequencies at telecom wavelengths to produce different colors.

This new research is a first step toward replacing the standard materials used in today’s tunable lasers, which are measured in millimeters and centimeters, said Trovatello, who recently completed her PhD with Cerullo in Milan. “Nonlinear optics is currently a macroscopic world, but we want to make it microscopic,” she said.

Lasers give off a special kind of coherent light, which means all the photons in the beam share the same frequency and thus, color. Lasers operate only at specific frequencies, but devices often need to be able to deploy different colors of laser light. For example, a green laser pointer is actually produced by an infrared laser that’s converted to a visible color by a macroscopic material. Researchers use nonlinear optical techniques to change the color of laser light, but conventionally used materials need to be relatively thick for color conversion to occur efficiently.

MoS2 is one of the most studied examples of an emerging class of materials called transition metal dichalcogenides, which can be peeled into atomically thin layers. Single layers of MoS2 can convert light frequencies efficiently, but are actually too thin to be used to build devices. Larger crystals of MoS2, meanwhile, tend to be more stable in a non-color converting form. To fabricate the necessary crystals, known as 3R-MoS2, the team worked with the commercial 2D-material supplier HQ Graphene.

With 3R-MoS2 in hand, Xu began peeling off samples of varying thickness to test how efficiently they converted the frequency of  light. Right away, the results were spectacular. “Rarely in science do you start on a project that ends up working better than you expect—usually it’s the opposite. This was a rare, magical case,” remarked Schuck. Usually, special sensors are needed to register the light produced by a sample, and it takes some time for them to do so, explained Xu. “With 3R-MoS2, we could see the extremely large enhancement almost immediately,” he said. Notably, the team recorded these conversions at telecom wavelengths, a key feature for potential optical communications applications, such as delivering internet and television services.

In a fortunate accident during one scan, Xu focused on a random edge of a crystal and saw fringes that suggested waveguide modes were present inside the material. Waveguide modes keep different color photons, which otherwise move at different speeds across the crystal, in sync, and can possibly be used to generate so-called entangled photons, a key component of quantum optics applications. The team handed their devices off to the lab of physicist Dmitri Basov, where his postdoc Fabian Mooshammer confirmed their hunch.

Currently, the most popular crystal for waveguided conversion and generating entangled photons is lithium niobate, a hard and stiff material that needs to be fairly thick for achieving useful conversion efficiencies. 3R-MoS2 is equally efficient but 100 times smaller and flexible enough that it can be combined with silicon photonic platforms to create optical circuits on chips, following the trajectory of ever-smaller electronics.

With this proof-of-concept result, the bottleneck toward real-life applications is large-scale production of 3R-MoS2 and high-throughput structuring of devices. There, the team says, industry will need to take over. With this work, they hope they’ve demonstrated the promise of 2D materials.

“I’ve been working on nonlinear optics for more than thirty years now. Research is most often incremental, slowly building on what came before. It’s rare that you do something completely new with big potential,” said Cerullo. “I have a feeling that this new material could change the game.”

Read more: Xinyi Xu, Chiara Trovatello, et al. Towards compact phase-matched and waveguide nonlinear optics in atomically layered semiconductors. Nature Photonics (2022). DOI: 10.1038/s41566-022-01053-4

Work at Columbia was supported by the US Department of Energy-funded Programmable Quantum Materials Energy Frontiers Research Center. Work at Politecnico di Milano was supported by the European Union’s Horizon 2020 Research and Innovation Program.

Journal: Nature Photonics
DOI: 10.1038/s41566-022-01053-4
Method of Research: Experimental study
Article Title: Towards compact phase-matched and waveguided nonlinear optics in atomically layered semiconductors
Article Publication Date: 22-Aug-2022

Media Contact

Holly Evarts
Columbia University School of Engineering and Applied Science
he2181@columbia.edu
Office: 212-854-3206
Cell: 347-453-7408

www.columbia.edu

Media Contact

Holly Evarts
Columbia University School of Engineering and Applied Science

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

Pinpointing hydrogen isotopes in titanium hydride nanofilms

Although it is the smallest and lightest atom, hydrogen can have a big impact by infiltrating other materials and affecting their properties, such as superconductivity and metal-insulator-transitions. Now, researchers from…

A new way of entangling light and sound

For a wide variety of emerging quantum technologies, such as secure quantum communications and quantum computing, quantum entanglement is a prerequisite. Scientists at the Max-Planck-Institute for the Science of Light…

Telescope for NASA’s Roman Mission complete, delivered to Goddard

NASA’s Nancy Grace Roman Space Telescope is one giant step closer to unlocking the mysteries of the universe. The mission has now received its final major delivery: the Optical Telescope…