New Model for Matter in Neutron Star Collisions

Illustration of the new method: the researchers use five-dimensional black holes (right) to calculate the phase diagram of strongly coupled matter (middle), enabling simulations of neutron star mergers and the produced gravitational waves (left).
(c) Institut für Theoretische Physik
Goethe-Universität

As dense as it gets:

With the exception of black holes, neutron stars are the densest objects in our universe. As their name suggests, neutron stars are mainly made of neutrons. However, our knowledge about the matter produced during the collision of two neutron stars is still limited. Scientists from Goethe University Frankfurt and the Asia Pacific Center for Theoretical Physics in Pohang have now developed a new model that gives insights about matter under such extreme conditions.

After a massive star has burned its fuel and explodes as a supernova, an extremely compact object, called a neutron star, can be formed. Neutron stars are extraordinarily dense: To reach the density inside them, one would need to squeeze a massive body like our sun down to the size of a city like Frankfurt. In 2017, gravitational waves, the small ripples in spacetime that are produced during a collision of two neutron stars, could be directly measured here on earth for the first time.

However, the composition of the resulting hot and dense merger product is not known precisely. It is still an open question, for instance, whether quarks, which are otherwise trapped in neutrons, can appear in free form after the collision. Dr. Christian Ecker from the Institute for Theoretical Physics of Goethe University Frankfurt, Germany, and Dr. Matti Järvinen and Dr. Tuna Demircik from the Asia Pacific Center for Theoretical Physics in Pohang, South Korea, have now developed a new model that allows them to get one step closer to answering this question.

In their work, they extend models from nuclear physics, which are not applicable at high densities, with a method used in string theory to describe the transition to dense and hot quark matter. “Our method uses a mathematical relationship found in string theory, namely the correspondence between five-dimensional black holes and strongly interacting matter, to describe the phase transition between dense nuclear and quark matter”, explain Dr. Demircik and Dr. Järvinen.

”We have already used the new model in computer simulations to calculate the gravitational-wave signal from these collisions and show that both hot and cold quark matter can be produced”, adds Dr. Ecker, who implemented these simulations in collaboration with Samuel Tootle and Konrad Topolski from the working group of Prof. Luciano Rezzolla at Goethe University in Frankfurt. Next, the researchers hope to be able to compare their simulations with future gravitational waves measured from space in order to gain further insights into quark matter in neutron star collisions.

Wissenschaftliche Ansprechpartner:

Dr. Christian Ecker
Institute for Theoretical Physics
Goethe University
069/798-47886
ecker@itp.uni-frankfurt.de
https://tinygu.de/2b9Tn

Originalpublikation:

https://journals.aps.org/prx/abstract/10.1103/PhysRevX.12.041012

https://www.uni-frankfurt.de

Media Contact

Dr. Phyllis Mania Public Relations und Kommunikation
Goethe-Universität Frankfurt am Main

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

Sensitive ceramics for soft robotics

Most people think of coffee cups, bathroom tiles or flower pots when they hear the word “ceramic”. Not so Frank Clemens. For the research group leader in Empa’s Laboratory for…

‘Entirely unanticipated’ role of protein netrin1 in spinal cord development

Known for its axon guidance properties, new research suggests protein is critical in guiding neural development. Scientists at the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research…

AI to improve brain cancer diagnosis, monitoring, treatment

Recommendations published in The Lancet Oncology call for good clinical practice of new technologies to modernize decades-old standard of care for brain cancer patients. An international, multidisciplinary team of leading…