New technique speeds measurement of ultrafast pulses

Schematics of the experimental setup showing a temporal fan out (TFO) gate represented by the yellow dashed box, which includes a digital micromirror device. The propagation direction of prepared input ultrafast pulse, originating in blue dashed box, is shown in pink. Dark red lines represent the corresponding pulse front.
Illustration by Jiapeng Zhao

Rochester researchers next will aim for a combination of spatial, temporal imaging.

When we look at an object with our eyes, or with a camera, we can automatically gather enough pixels of light at visible wavelengths to have a clear image of what we see.

However, to visualize a quantum object or phenomenon where the illumination is weak, or emanating from nonvisible infrared or far infrared wavelengths, scientists need far more sensitive tools. For example, they have developed single-pixel imaging in the spatial domain as a way to pack and spatially structure as many photons as possible onto a single pixel detector and then create an image using computational algorithms.

Similarly, in the time domain, when an unknown ultrafast signal is either weak, or in the infrared or far infrared wavelengths, the ability of single-pixel imaging to visualize it is reduced. Based on the spatio-temporal duality of light pulses, University of Rochester researchers have developed a time-domain single-pixel imaging technique, described in Optica, that solves this problem, detecting 5 femtojoule ultrafast light pulses with a temporal sampling size down to 16 femtoseconds. This time-domain analogy of the single-pixel imaging shows similar advantages to its spatial counterparts: a good measurement efficiency, a high sensitivity, robustness against temporal distortions and the compatibility at multiple wavelengths.

Lead author Jiapeng Zhao, a PhD student in optics at the University of Rochester, says possible applications include a highly accurate spectrographic tool, demonstrated to achieve 97.5 percent accuracy in identifying samples using a convolutional neural network with this technique.

The technique can also be combined with single-pixel imaging to create a computational hyperspectral imaging system, says Zhao, who works in the Rochester research group of Robert Boyd, professor of optics. The system can greatly speed up the detection and analysis of images at broad frequency bands. This could be especially useful for medical applications, where detection of nonvisible light emanating from human tissue at different wavelengths can indicate disorders such as high blood pressure.

“By coupling our technique with single pixel imaging in the spatial domain, we can have good hyperspectral image within a few seconds. That’s much faster than what people have done before,” Zhao says.

Other coauthors include Boyd and Xi-Cheng Zhang at Rochester, Jianming Dai at Tianjin University, and Boris Braverman at the University of Ottawa.

This project was supported with funding from the Office of Naval Research, the National Natural Science Foundation of China and the National Key Research and Development Program of China.

Journal: Optica
DOI: https://doi.org/10.1364/OPTICA.431455
Method of Research: Experimental study
Subject of Research: Not applicable
Article Title: Compressive ultrafast pulse measurement via time-domain single-pixel imaging
Article Publication Date: 30-Aug-2021

Media Contact

Robert Marcotte
University of Rochester
bmarcotte@ur.rochester.edu
Office: 585-329-3583

Media Contact

Robert Marcotte
University of Rochester

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

Pinpointing hydrogen isotopes in titanium hydride nanofilms

Although it is the smallest and lightest atom, hydrogen can have a big impact by infiltrating other materials and affecting their properties, such as superconductivity and metal-insulator-transitions. Now, researchers from…

A new way of entangling light and sound

For a wide variety of emerging quantum technologies, such as secure quantum communications and quantum computing, quantum entanglement is a prerequisite. Scientists at the Max-Planck-Institute for the Science of Light…

Telescope for NASA’s Roman Mission complete, delivered to Goddard

NASA’s Nancy Grace Roman Space Telescope is one giant step closer to unlocking the mysteries of the universe. The mission has now received its final major delivery: the Optical Telescope…