Obstacle course for microscopic whirlwinds

The boundaries of differently shaped skyrmions (left) are found at coinciding positions. And even the boundaries of stripe-like structures (right) match those positions.
ill./©: Raphael Gruber, JGU

Joint project involving experimental and theoretical physicists and coordinated by Johannes Gutenberg University Mainz is providing greater insight into the pinning effects of skyrmions.

We know hurricanes mainly from worldwide weather phenomena, but they have started to occur more frequently also in Europe. However, when researchers use an optical Kerr microscope to zoom in on thin films of magnetic material, they see something related happening in the microcosm, given the right conditions: a sort of micro-scale magnetic hurricane.

Physicists call these whirlwind-like magnetic structures skyrmions. The idea is to use this phenomenon for data storage or processing devices. For those applications, the motion of the mini-whirlwinds, which themselves act as stand-alone particles or so-called quasi-particles, has to be exploited. The skyrmions can move both due to temperature effects as well as by electrical currents. While more powerful “pushes” are needed for certain applications, the random thermal motion is desirable for other ones, such as in non-conventional computing.

Pinning: When skyrmions meet the “obstacle course”

The nanometer-thin material films in which skyrmions can be observed are never perfect. As a result, these little magnetic whirlwinds can get stuck – an effect known as pinning. In most cases, they get so caught up that they are unable to escape. It’s like trying to roll a small ball on the surface of an old table covered by scratches and gouges. Its path will be deflected and if there is an indentation large enough, the ball simply gets stuck. When skyrmions get trapped like this it poses challenges, particularly with regard to applications that rely on the thermal movement of the quasi-particles. Pinning can lead to a complete standstill of this movement.

Understanding the fundamentals of pinning

“I have used a Kerr microscope to study skyrmions of just a micrometer in size – or, to be more precise, their pinning behavior,” said Raphael Gruber, a doctoral candidate and member of the research team of Professor Mathias Kläui at Johannes Gutenberg University Mainz (JGU). There are already a number of theories as to how the effect occurs. Most of them concentrate on looking at skyrmions as a whole; in other words, they focus on the motion of their centers. There even have been a few experimental studies, but in the presence of strong pinning where the skyrmions are unable to move at all. “My investigations are based on weak pinning allowing the skyrmions to move a bit and keep hopping until they get caught up somewhere else,” Gruber elaborated. His results provide interesting new insights. “Skyrmions do not fall like balls into a hole,” the experimental physicist summarized. “What happens is that it sticks to something at its surface.” The corresponding findings have recently been published in Nature Communications.

Research group lead Professor Mathias Kläui is also delighted by the new findings, which are the result of many years of collaboration with groups from theoretical physics: “Under the aegis of the Skyrmionics Priority Program funded by the German Research Foundation and the Spin+X Collaborative Research Center, we have been investigating the dynamics of spin structures together with our counterparts working in the field of theoretical physics. I am pleased to say that this very productive collaboration, especially also between postgraduates in the involved groups, has generated these fascinating results.” Dr. Peter Virnau, who heads up a theoretical physics groups in Mainz, added: “Skyrmions are a relatively new aspect in my research. My introduction to them was made possible by funding provided by the State of Rhineland-Palatinate through the TopDyn – Dynamics and Topology Top-Level Research Area at JGU. I am glad that our numerical methods could contribute to a better understanding of the experimental data.”

Captions:
https://download.uni-mainz.de/presse/08_physik_komet_skyrmionen_pinning.jpg
The boundaries of differently shaped skyrmions (left) are found at coinciding positions. And even the boundaries of stripe-like structures (right) match those positions.
ill./©: Raphael Gruber, JGU

Related links:
https://www.klaeui-lab.physik.uni-mainz.de – Kläui Lab at the JGU Institute of Physics ;
https://www.komet1.physik.uni-mainz.de – Statistical Physics and Soft Matter Theory at the JGU Institute of Physics ;
https://topdyn.uni-mainz.de/ – TopDyn – Dynamics and Topology
https://www.uni-due.de/physik/twist/ – TWIST – Topological Whirls In SpinTronics

Read more:
https://www.uni-mainz.de/presse/aktuell/14647_ENG_HTML.php – press release “Efficient read-out in antiferromagnetic spintronics” (25 Nov. 2021) ;
https://www.uni-mainz.de/presse/aktuell/13181_ENG_HTML.php – press release “Magnetic whirls in confined spaces” (4 March 2021) ;
https://www.uni-mainz.de/presse/aktuell/12071_ENG_HTML.php – press release “Magnetic whirls crystallize in two dimensions” (9 Sept. 2020)

Wissenschaftliche Ansprechpartner:

Professor Dr. Mathias Kläui
Institute of Physics
Johannes Gutenberg University Mainz
55099 Mainz, GERMANY
phone +49 6131 39-23633
e-mail: klaeui@uni-mainz.de
https://www.klaeui-lab.physik.uni-mainz.de/homepage-prof-dr-mathias-klaeui/

Raphael Gruber
Kläui Lab
Institute of Physics
Johannes Gutenberg University Mainz
55099 Mainz, GERMANY
e-mail: rgruber@students.uni-mainz.de
https://www.klaeui-lab.physik.uni-mainz.de

Originalpublikation:

R. Gruber et al., Skyrmion pinning energetics in thin film systems, Nature Communications 13: 3144, 6 June 2022,
DOI: 10.1038/s41467-022-30743-4
https://www.nature.com/articles/s41467-022-30743-4

https://www.uni-mainz.de/

Media Contact

Petra Giegerich Kommunikation und Presse
Johannes Gutenberg-Universität Mainz

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

Breakthrough in magnetism that could transform quantum computing and superconductors

Researchers discover new magnetic and electronic properties in kagome magnet thin films. A discovery by Rice University physicists and collaborators is unlocking a new understanding of magnetism and electronic interactions…

NASA to launch innovative solar coronagraph to Space Station

NASA’s Coronal Diagnostic Experiment (CODEX) is ready to launch to the International Space Station to reveal new details about the solar wind including its origin and its evolution. Launching in…

Boosting efficiency in mining with AI and automation

“Doing instead of procrastinating”. This is the AI strategy presented by Prof. Constantin Haefner, Director of the Fraunhofer Institute for Laser Technology ILT, at the “AKL’24 – International Laser Technology…