This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.
innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.
A new instrument developed at the National Center for Atmospheric Research (NCAR) has captured landmark imagery of fast-evolving magnetic structures in the solar atmosphere. Steven Tomczyk (NCAR High Altitude Observatory) presented the images on Monday, May 31, at the annual meeting of the American Astronomical Society (AAS) in Denver.
Animations from the coronal multichannel polarimeter, or CoMP, reveal turbulent, high-velocity magnetic features spewing outward from the Suns surface.
Using a new computer model of the Sun, scientists have begun work on a groundbreaking forecast of the next cycle of sunspots. Mausumi Dikpati of the National Center for Atmospheric Research (NCAR) announced new research leading to an improved forecast of cycle 24 at the annual meeting of the American Astronomical Society (AAS) in Denver. Predicting features of the solar cycle may help society anticipate sunspots and associated solar storms, which can disrupt communications and power systems and exp
Some of the first data from a new orbiting infrared telescope are revealing that the Milky Way – and by analogy galaxies in general – is making new stars at a much more prolific pace than astronomers imagined.
The findings from NASAs Spitzer Space Telescope were announced today (May 27) at a NASA headquarters press briefing by Edward Churchwell, a University of Wisconsin-Madison astronomer and the leader of a team conducting the most detailed survey to date of our galaxy in infrared l
New percolation model may allow researchers to study biochemistry at the atomic level A new report in the May 24 Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences announces a mathematical model that will help researchers understand “cell signaling” and learn how single atoms travel along the circuitous pathways in a cell. The model is a new approach to look at percolation-the flow of a liquid or small particle through a porous material.
Astrophysical Virtual Observatory Proves To Be Essential Tool Active galaxies
Active galaxies are breathtaking objects. Their compact nuclei (AGN = Active Galaxy Nuclei) are so luminous that they can outshine the entire galaxy; “quasars” constitute extreme cases of this phenomenon, their powerful engine making them visible over a very large fraction of the observable Universe.
It is now widely accepted that the ultimate power station of these activities originates in sup
Quasars are the most brilliant of cosmic fireworks, shining out across billions of light-years of space. However, a recent study done at Gemini Observatory shows that they appear to blaze forth from humdrum galaxies in the early universe, and surprisingly, not from the giant or disrupted ones astronomers expected.
According to an international team of astronomers that studied an assortment of these luminous objects near the edge of the observable universe, these pedestrian galactic surroun