Parallel planar heterojunction strategy for efficient solar cells
Recently, a team led by Prof. WANG Mingtai from the Institute of Solid State Physics, Hefei Institutes of Physical Science (HFIPS), Chinese Academy of Sciences (CAS) has put forward an intriguing approach to enhance the efficiency of solar cells. Their focus on the potential antimony trisulfide (Sb2S3) as a photovoltaic absorber has led to a Parallel Planar Heterojunction (PPHJ) strategy for the preparation of highly efficient solar cells.
Their findings have been published in Angewandte Chemie International Edition.
One of the current challenges in the terrestrial utility of photovoltaic electricity is the absence of low-cost, efficient, and stable materials as well as the related photovoltaic devices for converting photons to electrons. Typically, two independent planar heterojunction (PHJ) subcells are stacked in tandem to create efficient solar cells. However, the need for an interfacial layer for the recombination of opposite charges from the top and bottom subcells increases complexity to material selection and device preparation.
“This is why we introduced the PPHJ strategy in our research.” Prof. CHEN Chong explains, “it enables us to tap into the practical potential of creating efficient multiple PHJ solar cells.”
The Sb2S3-based PPHJ device consists of two types of conventional PHJ subcells connected in parallel. Researchers explained the divided tasks. The Sb2S3-based PHJ subcells are responsible for absorption and charge generation, while the CH3NH3PbI3-based PHJ subcells govern the electron transport towards collection electrode. Despite the two types of subcells, the PPHJ device remains an Sb2S3 device in nature.
The outcome is a remarkable increase in the efficiency of solution-processed Sb2S3 solar cells, achieving an impressive 8.32% efficiency, the highest among all Sb2S3 devices.
“Indeed, our strategy simplifies the preparation process by allowing for the conventional sequential depositions of multiple PHJ layers,” said CHEN, “It eliminates the typical complexity associated with both tandem and parallel tandem PHJ systems.”
“This study paves the way for the conceptual design of low-cost and efficient partially or fully inorganic solar cells, thus promoting their development,” added CHEN.
Journal: Angewandte Chemie International Edition
DOI: 10.1002/anie.202312951
Article Title: Parallel Planar Heterojunction Strategy Enables Sb2S3 Solar Cells with Efficiency Exceeding 8%
Article Publication Date: 31-Oct-2023
Media Contact
Weiwei Zhao
Hefei Institutes of Physical Science, Chinese Academy of Sciences
annyzhao@ipp.ac.cn
Office: 86-551-655-91206
Original Source
https://english.hf.cas.cn/nr/bth/202311/t20231109_642670.html
Media Contact
All latest news from the category: Physics and Astronomy
This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.
innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.
Newest articles
Retinoblastoma: Eye-Catching Investigation into Retinal Tumor Cells
A research team from the Medical Faculty of the University of Duisburg-Essen and the University Hospital Essen has developed a new cell culture model that can be used to better…
A Job Well Done: How Hiroshima’s Groundwater Strategy Helped Manage Floods
Groundwater and multilevel cooperation in recovery efforts mitigated water crisis after flooding. Converting Disasters into Opportunities Society is often vulnerable to disasters, but how humans manage during and after can…
Shaping the Future: DNA Nanorobots That Can Modify Synthetic Cells
Scientists at the University of Stuttgart have succeeded in controlling the structure and function of biological membranes with the help of “DNA origami”. The system they developed may facilitate the…