Physicists discover novel quantum effect in bilayer graphene
Theorists at The University of Texas at Dallas, along with colleagues in Germany, have for the first time observed a rare phenomenon called the quantum anomalous Hall effect in a very simple material. Previous experiments have detected it only in complex or delicate materials.
Dr. Fan Zhang, associate professor of physics in the School of Natural Sciences and Mathematics, is an author of a study published on Oct. 6 in the journal Nature that demonstrates the exotic behavior in bilayer graphene, which is a naturally occurring, two-atom thin layer of carbon atoms arranged in two honeycomb lattices stacked together.
The quantum Hall effect is a macroscopic phenomenon in which the transverse resistance in a material changes by quantized values in a stepwise fashion. It occurs in two-dimensional electron systems at low temperatures and under strong magnetic fields. In the absence of an external magnetic field, however, a 2D system may spontaneously generate its own magnetic field, for example, through an orbital ferromagnetism that is produced by interactions among electrons. This behavior is called the quantum anomalous Hall effect.
“When the rare quantum anomalous Hall effect was investigated previously, the materials studied were complex,” Zhang said. “By contrast, our material is comparably simple, since it just consists of two layers of graphene and occurs naturally.”
Dr. Thomas Weitz, an author of the study and a professor at the University of Göttingen, said: “Additionally, we found quite counterintuitively that even though carbon is not supposed to be magnetic or ferroelectric, we observed experimental signatures consistent with both.”
In research published in 2011, Zhang, a theoretical physicist, predicted that bilayer graphene would have five competing ground states, the most stable states of the material that occur at a temperature near absolute zero (minus 273.15 degrees Celsius or minus 459.67 degrees Fahrenheit). Such states are driven by the mutual interaction of electrons whose behavior is governed by quantum mechanics and quantum statistics.
“We predicted that there would be five families of states in bilayer graphene that compete with each other to be the ground state. Four have been observed in the past. This is the last one and the most challenging to observe,” Zhang said.
In experiments described in the Nature article, the researchers found eight different ground states in this fifth family that exhibit the quantum anomalous Hall effect, ferromagnetism and ferroelectricity simultaneously.
“We also showed that we could choose among this octet of ground states by applying small external electric and magnetic fields as well as controlling the sign of charge carriers,” Weitz said.
The ability to control the electronic properties of bilayer graphene to such a high degree might make it a potential candidate for future low-dissipation quantum information applications, although Zhang and Weitz said they are primarily interested in revealing the “beauty of fundamental physics.”
“We predicted, observed, elucidated and controlled a quantum anomalous Hall octet, where three striking quantum phenomena — ferromagnetism, ferroelectricity and zero-field quantum Hall effect —can coexist and even cooperate in bilayer graphene,” Zhang said. “Now we know we can unify ferromagnetism, ferroelectricity and the quantum anomalous Hall effect in this simple material, which is amazing and unprecedented.”
Other authors of the Nature article include UT Dallas physics doctoral student Tianyi Xu and researchers from the University of Göttingen and the Ludwig Maximilian University of Munich.
Zhang’s research is funded by the U.S. Army Combat Capabilities Development Command’s Army Research Laboratory and the National Science Foundation.
Journal: Nature
DOI: 10.1038/s41586-021-03849-w
Method of Research: Experimental study
Subject of Research: Not applicable
Article Title: Quantum anomalous Hall octet driven by orbital magnetism in bilayer graphene
Article Publication Date: 6-Oct-2021
Media Contact
Amanda Siegfried
University of Texas at Dallas
amanda.siegfried@utdallas.edu
Office: 972-883-4335
All latest news from the category: Physics and Astronomy
This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.
innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.
Newest articles
Pinpointing hydrogen isotopes in titanium hydride nanofilms
Although it is the smallest and lightest atom, hydrogen can have a big impact by infiltrating other materials and affecting their properties, such as superconductivity and metal-insulator-transitions. Now, researchers from…
A new way of entangling light and sound
For a wide variety of emerging quantum technologies, such as secure quantum communications and quantum computing, quantum entanglement is a prerequisite. Scientists at the Max-Planck-Institute for the Science of Light…
Telescope for NASA’s Roman Mission complete, delivered to Goddard
NASA’s Nancy Grace Roman Space Telescope is one giant step closer to unlocking the mysteries of the universe. The mission has now received its final major delivery: the Optical Telescope…