Pulling Polymers Leads to New Insights into their Mechanical Behavior
Atomic force microscopy is a method normally used for imaging matter with very high resolution. The sharp tip of the microscope is used to scan the surface line by line. The resolution is so high, that single atoms can be seen.
“This method is roughly equivalent to using the tip of the Matterhorn to scan the surface of a tennis ball”, says Prof. Ernst Meyer of the Department for Physics at the University of Basel. Due to an improved method, the scientists are now able to investigate the mechanical behavior of a single polymer being pulled off a surface.
Using the tip of the AFM, the researchers were able to pull single chains of molecules (polymers) off a gold surface. “The molecule-surface interaction during pulling is so weak that each chain link (molecular unit) detaches successively.
Thus, the whole chain can be pulled off almost vertically to the surface”, explains Meyer. By analyzing the observed oscillations, the researchers are able to make quantitative statements on the binding energy of each molecular unit.
Motion without friction
Furthermore, the experiments showed that the polymers could be pulled off with almost no lateral forces. This remarkable behavior of nearly frictionless motion was predicted by a theoretical model and has now been verified for molecules on a gold surface.
Previously, the mechanical behavior of single polymer during pulling from a surface had never been investigated with atomic-scale resolution. The findings and calculations of the research team now provide detailed insight into this process for the first time.
Such investigations are not only of interest for the field of physics, but also for biology and chemistry, since the method of pulling polymers from surfaces can also be applied to biological molecules. So far, valuable insights have been obtianed into the folding and unfolding of DNA and proteins. Chemical reactions of small biopolymer sub units or complex polymer chains under the influence of traction forces and catalytic nanoparticles could be investigated with this new method.
Original source
Shigeki Kawai, Matthias Koch, Enrico Gnecco, Ali Sadeghi, Rémy Pawlak, Thilo Glatzel, Jutta Schwarz, Stefan Goedecker, Stefan Hecht, Alexis Baratoff, Leonhard Grill and Ernst Meyer
Quantifying the atomic-level mechanics of single long physisorbed molecular chains
PNAS Early Edition | doi: 10.1073/pnas.1319938111
Further information
Prof. Ernst Meyer, University of Basel, Department of Physics, phone: +41 61 267 37 24, email: ernst.meyer@unibas.ch
http://unibas.ch/index.cfm?uuid=872F3068BB9FFB71DC9D3BF5D34565BC&type=search…
Media Contact
All latest news from the category: Physics and Astronomy
This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.
innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.
Newest articles
Pinpointing hydrogen isotopes in titanium hydride nanofilms
Although it is the smallest and lightest atom, hydrogen can have a big impact by infiltrating other materials and affecting their properties, such as superconductivity and metal-insulator-transitions. Now, researchers from…
A new way of entangling light and sound
For a wide variety of emerging quantum technologies, such as secure quantum communications and quantum computing, quantum entanglement is a prerequisite. Scientists at the Max-Planck-Institute for the Science of Light…
Telescope for NASA’s Roman Mission complete, delivered to Goddard
NASA’s Nancy Grace Roman Space Telescope is one giant step closer to unlocking the mysteries of the universe. The mission has now received its final major delivery: the Optical Telescope…