On quantum paths through the helium atom
This forms an essential basis for electron holography of atoms (Physical Review Letters 103, 053001).
How do electrons move inside an atom and what happens in detail if this motion is distorted? Capturing this dynamics in time-dependent quantum systems in detail is the great dream of physicists – and has become more and more reality during recent years through substantially advanced experimental methods.
Attosecond physics provides a new promising approach with a precision better than a millionth of a billionth second, just the timescale of a moving electron inside an atom. In order to get a deeper insight into the electron cloud, Max Planck researchers utilize the electron's ability to interfere with itself due to its quantum wave nature. Interference is also the basis of optical holography: here, a beam splitter directs light waves on two paths, and one of them illuminates the object to be investigated. The reflected light is then superimposed with the direct beam creating an interference pattern which contains complete information about the sample and allows its reconstruction.
In the current experiment the helium atom itself plays the role of the beam splitter being exposed to a few-cycle laser pulse: the electron can only be pulled out of the atom by the laser field within a very short time interval, i.e. if the amplitude of the os-cillating field has reached a maximum. In case of the sine-type evolution of the elec-trical field used in the experiment (see Fig. 1) one finds exactly two ionization times t1 and t2. An electron launched at t1 is forced by the oscillating field to turn back and pass its parent ion before it finally leaves the atom. During the passage the electronic wave packet picks up information about the parent ion's internal structure. Being launched at t2 the electron escapes directly without detour (Abb 1). If the electron's direction and velocity is finally identical and, thus, both possible quantum paths indis-tinguishable, interference occurs like in the well-known double-slit experiment (Abb. 1). Akin to optical holography the parent ion consisting of the nucleus and the resid-ual second electron is scanned by the first wave packet whereas the electron launched at t2 forms the reference beam.
The electrons are recorded by a 'reaction microscope' developed and built at the MPI and installed at the AS-1 beam line at MPQ for the joint experiment. Linearly-polarized ultra-short (5 fs) laser pulses at 740 nm are generated with a repetition rate of 3 kHz and focused in an ultrahigh vacuum chamber onto a supersonic helium gas jet. The reaction products – electrons and helium ions – are directed towards two detectors by means of weak electric and magnetic fields. The direction and velocity of the particles is derived from their time of flight and position on the detector. The physicists compared the velocity distributions measured as described above with results of a theoretical model calculation (Abb. 2) by Dieter Bauer (MPIK). The data agree qualitatively very well, although the model does not include the full complex-ity of the helium atom. Hence, the researchers conclude that the observed interfer-ence pattern was indeed generated by a true two-slit arrangement. The slits are de-termined by the two time windows where the electron can be launched. It follows from the observed pattern that the effective width of the slits amounts only to 20 at-toseconds. Thus, the electron's three-dimensional velocity distribution, obtained by means of the reaction microscope, comprising the interference pattern could be envisaged as a time-dependent hologram of the helium ion.
The fellow researchers of Ullrich and Kling ascribe a large potential to this method, to gain further advancement in imaging the inner dynamics of atoms and more de-tailed time-resolved information about atomic and molecular structure. A better control of the laser pulse shape could for instance resolve variations in the electron cloud of the atom's ionic core on an attosecond time scale.
Contact:
Prof. Dr. Joachim Ullrich
Max-Planck-Institut für Kernphysik
Saupfercheckweg 1
69117 Heidelberg, Germany
Phone: (+49)6221/516-696
Fax: (+49)6221/516-604
E-mail: joachim.ullrich@mpi-hd.mpg.de
Dr. Matthias F. Kling
JRG “Attosecond Imaging”
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Str. 1
85748 Garching, Germany
Phone: (+49)89/32905-234
Fax: (+49)89/32905-649
E-mail: matthias.kling@mpq.mpg.de
Dr. Dieter Bauer
Max-Planck-Institut für Kernphysik
Saupfercheckweg 1
69117 Heidelberg, Germany
Phone: (+49)6221/516-186
Fax: (+49)6221/516-152
E-mail: dieter.bauer@mpi-hd.mpg.de
Weitere Informationen:
http://link.aps.org/doi/10.1103/PhysRevLett.103.053001 Original publication.
http://www-3.mpi-hd.mpg.de/mpi/fileadmin/files-mpi/PI_He-holo_Abb3.jpg Artist's view of helium electron holography in an ultra-short laser pulse (MPQ).
http://www.mpi-hd.mpg.de/ullrich/ Website of the Ullrich Division (MPIK).
http://www.attoworld.de/junresgrps/attosecimaging.html Website of the Kling Junior Research Group (MPQ).
http://www.mpi-hd.mpg.de/keitel/dbauer/ Website of the Bauer Group (MPIK)
Media Contact
More Information:
http://www.mpi-hd.mpg.deAll latest news from the category: Physics and Astronomy
This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.
innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.
Newest articles
Future AR/VR controllers could be the palm of your hand
Carnegie Mellon University’s EgoTouch creates simple interfaces for virtual and augmented reality. The new generation of augmented and virtual reality controllers may not just fit in the palm of your…
‘Game changer’ in lithium extraction
Rice researchers develop novel electrochemical reactor. A team of Rice University researchers led by Lisa Biswal and Haotian Wang has developed an innovative electrochemical reactor to extract lithium from natural…
The blue-green sustainable proteins of seaweed
… may soon be on your plate. The protein in sea lettuce, a type of seaweed, is a promising complement to both meat and other current alternative protein sources. Seaweed…