Taken Under The "Wing" of the Small Magellanic Cloud

X-ray: NASA/CXC/Univ.Potsdam/L.Oskinova et al; Optical: NASA/STScI; Infrared: NASA/JPL-Caltech<br> <br>New Chandra observations have been used to make the first detection of X-ray emission from young stars with masses similar to our Sun outside our Milky Way galaxy. The Chandra observations of these low-mass stars were made of the region known as the &quot;Wing&quot; of the Small Magellanic Cloud (SMC), one of the Milky Way's closest galactic neighbors. In this composite image of the Wing the Chandra data is shown in purple, optical data from the Hubble Space Telescope is shown in red, green and blue and infrared data from the Spitzer Space Telescope is shown in red. Astronomers call all elements heavier than hydrogen and helium -- that is, with more than two protons in the atom's nucleus -- &quot;metals&quot;. The Wing is a region known to have fewer metals compared to most areas within the Milky Way. The Chandra results imply that the young, metal-poor stars in NGC 602a produce X-rays in a manner similar to stars with much higher metal content found in the Orion cluster in our Galaxy.<br>

Modern astronomers are also interested in studying the SMC (and its cousin, the Large Magellanic Cloud), but for very different reasons. Because the SMC is so close and bright, it offers an opportunity to study phenomena that are difficult to examine in more distant galaxies.

New Chandra data of the SMC have provided one such discovery: the first detection of X-ray emission from young stars with masses similar to our Sun outside our Milky Way galaxy. The new Chandra observations of these low-mass stars were made of the region known as the “Wing” of the SMC. In this composite image of the Wing the Chandra data is shown in purple, optical data from the Hubble Space Telescope is shown in red, green and blue and infrared data from the Spitzer Space Telescope is shown in red.
Astronomers call all elements heavier than hydrogen and helium – that is, with more than two protons in the atom's nucleus – “metals.” The Wing is a region known to have fewer metals compared to most areas within the Milky Way. There are also relatively lower amounts of gas, dust, and stars in the Wing compared to the Milky Way.

Taken together, these properties make the Wing an excellent location to study the life cycle of stars and the gas lying in between them. Not only are these conditions typical for dwarf irregular galaxies like the SMC, they also mimic ones that would have existed in the early Universe.
Most star formation near the tip of the Wing is occurring in a small region known as NGC 602, which contains a collection of at least three star clusters. One of them, NGC 602a, is similar in age, mass, and size to the famous Orion Nebula Cluster. Researchers have studied NGC 602a to see if young stars – that is, those only a few million years old – have different properties when they have low levels of metals, like the ones found in NGC 602a.

Using Chandra, astronomers discovered extended X-ray emission, from the two most densely populated regions in NGC 602a. The extended X-ray cloud likely comes from the population of young, low-mass stars in the cluster, which have previously been picked out by infrared and optical surveys, using Spitzer and Hubble respectively. This emission is not likely to be hot gas blown away by massive stars, because the low metal content of stars in NGC 602a implies that these stars should have weak winds. The failure to detect X-ray emission from the most massive star in NGC 602a supports this conclusion, because X-ray emission is an indicator of the strength of winds from massive stars. No individual low-mass stars are detected, but the overlapping emission from several thousand stars is bright enough to be observed.
The Chandra results imply that the young, metal-poor stars in NGC 602a produce X-rays in a manner similar to stars with much higher metal content found in the Orion cluster in our galaxy. The authors speculate that if the X-ray properties of young stars are similar in different environments, then other related properties — including the formation and evolution of disks where planets form — are also likely to be similar.

X-ray emission traces the magnetic activity of young stars and is related to how efficiently their magnetic dynamo operates. Magnetic dynamos generate magnetic fields in stars through a process involving the star's speed of rotation, and convection, the rising and falling of hot gas in the star's interior.

The combined X-ray, optical and infrared data also revealed, for the first time outside our Galaxy, objects representative of an even younger stage of evolution of a star. These so-called “young stellar objects” have ages of a few thousand years and are still embedded in the pillar of dust and gas from which stars form, as in the famous “Pillars of Creation” of the Eagle Nebula.

A paper describing these results was published online and in the March 1, 2013 issue of The Astrophysical Journal. The first author is Lidia Oskinova from the University of Potsdam in Germany and the co-authors are Wei Sun from Nanjing University, China; Chris Evans from the Royal Observatory Edinburgh, UK; Vincent Henault-Brunet from University of Edinburgh, UK; You-Hua Chu from the University of Illinois, Urbana, IL; John Gallagher III from the University of Wisconsin-Madison, Madison, WI; Martin Guerrero from the Instituto de Astrofísica de Andalucía, Spain; Robert Gruendl from the University of Illinois, Urbana, IL; Manuel Gudel from the University of Vienna, Austria; Sergey Silich from the Instituto Nacional de Astrofýsica Optica y Electr´onica, Puebla, Mexico; Yang Chen from Nanjing University, China; Yael Naze from Universite de Liege, Liege, Belgium; Rainer Hainich from the University of Potsdam, Germany, and Jorge Reyes-Iturbide from the Universidade Estadual de Santa Cruz, Ilheus, Brazil.

NASA’s Marshall Space Flight Center in Huntsville, Ala., manages the Chandra Program for NASA’s Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory controls Chandra’s science and flight operations from Cambridge, Mass.

Media Contact

Megan Watzke Newswise

More Information:

http://www.cfa.harvard.edu

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

Pinpointing hydrogen isotopes in titanium hydride nanofilms

Although it is the smallest and lightest atom, hydrogen can have a big impact by infiltrating other materials and affecting their properties, such as superconductivity and metal-insulator-transitions. Now, researchers from…

A new way of entangling light and sound

For a wide variety of emerging quantum technologies, such as secure quantum communications and quantum computing, quantum entanglement is a prerequisite. Scientists at the Max-Planck-Institute for the Science of Light…

Telescope for NASA’s Roman Mission complete, delivered to Goddard

NASA’s Nancy Grace Roman Space Telescope is one giant step closer to unlocking the mysteries of the universe. The mission has now received its final major delivery: the Optical Telescope…