New developments in assessing fluid flows
Scientists at Oxford University are developing a new Doppler Global Velocimetry (DGV) technique that will enable three-dimensional fluid velocity fields to be imaged reliably and accurately.
Over the last twenty years, a number of techniques have been explored to enable clear imaging of fluid flows, with the most advantageous being those that are non-intrusive. To date, one of the most important techniques has been particle image velocimetry (PIV). However, there is a major disadvantage with using PIV because considerable off-line processing is necessary to deconvolve the double image into a velocimetry field and three-dimensional information is difficult to retrieve.
In order to improve this technique, researchers in the Department of Engineering Science at Oxford University have developed the Doppler Global Velocimetry (DGV) technique that enables three-dimensional imaging of fast fluid flows in both an efficient and reliable manner.
The system is being developed with a number of significant modifications to specifically increase the reliability and accuracy of the measurements. In particular only one camera shot is now necessary, data processing is much easier, the imaging optics do not need to be as rigorous and three-dimensional information is more readily available.
The system has already been used successfully for a number of applications, including the imaging of gas flows in applications similar to those over gas turbine blades and in gas jets. Isis Innovation, Oxford University’s technology transfer company, still has opportunities available for companies interested in utilising this system in other applications.
Media Contact
All latest news from the category: Physics and Astronomy
This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.
innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.
Newest articles
First-of-its-kind study uses remote sensing to monitor plastic debris in rivers and lakes
Remote sensing creates a cost-effective solution to monitoring plastic pollution. A first-of-its-kind study from researchers at the University of Minnesota Twin Cities shows how remote sensing can help monitor and…
Laser-based artificial neuron mimics nerve cell functions at lightning speed
With a processing speed a billion times faster than nature, chip-based laser neuron could help advance AI tasks such as pattern recognition and sequence prediction. Researchers have developed a laser-based…
Optimising the processing of plastic waste
Just one look in the yellow bin reveals a colourful jumble of different types of plastic. However, the purer and more uniform plastic waste is, the easier it is to…