Plasma doughnut currents made hollow, leading to greater efficiency for fusion
Doughnuts of plasma can be coaxed into configurations with hollow current rings, providing practical advantages over conventional “filled doughnut” shapes. Simulations suggest they will allow faster turn-on and greater efficiency of future nuclear fusion power plants.
Toroidal tokamaks, doughnut-shaped experimental fusion reactors, use a complex system of magnetic fields to hold a plasma together. Electrical currents flowing in the plasma itself are essential for making the internal magnetic fields needed for confinement. Plasma doughnuts normally carry large electrical currents throughout their volume but researchers expected the direction of the current could be changed back and forth.
However, in recent experiments at the Joint European Torus (JET) and JT-60U tokamaks in England and Japan, researchers tried to reverse the current and found, to their surprise, that the current doughnut became hollow.
Now computer simulations conducted by researchers at the DOE’s Princeton Plasma Physics Laboratory (PPPL) using supercomputers at the National Energy Research Supercomputer Center have explained this phenomenon. Instead of the electric current reversing direction, the plasma experiences magnetic reconnection (see Highlight 4) and the core becomes stabilized with zero current. As soon as a current tries to reverse in the center, it is pulled into the outer ring. (See images.) This new understanding should allow a more practical design of compact next-generation fusion experiments.
Contacts
Joshua Breslau, PPPL, 609-243-2677, jbreslau@pppl.gov
Media Contact
All latest news from the category: Physics and Astronomy
This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.
innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.
Newest articles
First-of-its-kind study uses remote sensing to monitor plastic debris in rivers and lakes
Remote sensing creates a cost-effective solution to monitoring plastic pollution. A first-of-its-kind study from researchers at the University of Minnesota Twin Cities shows how remote sensing can help monitor and…
Laser-based artificial neuron mimics nerve cell functions at lightning speed
With a processing speed a billion times faster than nature, chip-based laser neuron could help advance AI tasks such as pattern recognition and sequence prediction. Researchers have developed a laser-based…
Optimising the processing of plastic waste
Just one look in the yellow bin reveals a colourful jumble of different types of plastic. However, the purer and more uniform plastic waste is, the easier it is to…