’Nano-lamp’ discovered by coincidence
On a semiconductor chip, one essential element is missing: a lightsource. An integrated lightsource can be very useful, however. In optical telecommunications, for example, or in lab-on-a-chip applications. University of Twente’s Phuong Le Minh developed a nanoscale integrated lightsourse. The principle of this tiny light source was discoverd by coincidence, performing semiconductor breakdown experiments. Le Minh succeeded in fabricating a micro channel
The nano-lightsource is formed by ‘controlled breakdown’ of the isolating oxide layer in a semiconductor device. At this moment, a tiny cell is formed working as a memory cell and as a light source as well, called an antifuse. The research group Semiconductor Components, of which Le Minh is a member, takes a lot of effort in investigating transistor reliability. In their experiments, the new ‘devices’ emitted light. What started as a surprising side-effect, could be transformed into a working nano-lamp. Le Minh has focused on applications in ‘microfluidics’: he has integrated the lightsource and a photodetector with a micron-size fluid channel and is able to distinguish various fluids going through. It is a very useful new part of a laboratory on a chip.
Apart from these lab-on-a-chip applications, research in optical telecommunications is focused on an ‘all-optical’ signal path, thus avoiding conversion losses, from optical to electronic vice versa. An integrated lightsource is very welcome there, as a new component. Silicon has excellent properties for a broad range of applications, but it is a very bad photon emitter: it is hard to fabricate an efficient light source in silicon. Coupling an external lightsource to a chip is a true piece of art as well: the system gets more voluminous than wanted, and coupling losses may appear. There is a worldwide quest for ‘solid state lighting’.
The lightsource is placed above the microchannel in a chip, with a photo detector on the bottomside of it. Detecting interference patterns, information can be retrieved about the fluid going through the channel. According to Le Minh, it is a step forward in the development of nano-lamps for various applications. He has performed his PhD research within the MESA+ research institute of the University of Twente, www.mesaplus.utwente.nl
Media Contact
More Information:
http://www.utwente.nl/nieuws/pers/cont_03-004.doc/All latest news from the category: Physics and Astronomy
This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.
innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.
Newest articles
Pinpointing hydrogen isotopes in titanium hydride nanofilms
Although it is the smallest and lightest atom, hydrogen can have a big impact by infiltrating other materials and affecting their properties, such as superconductivity and metal-insulator-transitions. Now, researchers from…
A new way of entangling light and sound
For a wide variety of emerging quantum technologies, such as secure quantum communications and quantum computing, quantum entanglement is a prerequisite. Scientists at the Max-Planck-Institute for the Science of Light…
Telescope for NASA’s Roman Mission complete, delivered to Goddard
NASA’s Nancy Grace Roman Space Telescope is one giant step closer to unlocking the mysteries of the universe. The mission has now received its final major delivery: the Optical Telescope…