Experiment may help size up neutrinos
Our planet is bombarded every second with a large number of chargeless, seemingly massless, particles that originate in nuclear fusion reactions that power the sun. Theyre called neutrinos.
According to The Standard Solar Model – the most substantiated model of the sun – the sun should emit around three times more neutrinos than are actually measured on Earth. They are a source of great interest for scientists who seek to better understand elementary particles and the physics of the sun. Indeed, one of the recipients of this years Nobel Prize in Physics was Raymond Davis, who first drew attention to the neutrino shortfall.
Three major research efforts (carried out by the underground large detector complexes at Sudbury Neutrino Observatory (SNO) in Canada, the U.S. National Underground Science Laboratory at Homestake and the Super-Kamikande in Japan ) have measured the number of neutrinos that actually reach Earth as a result of a specific reaction in the sun (thus the experiments are sensitive to only a small fraction of the solar neutrino spectrum). To better understand the shortfall of neutrinos on Earth, scientists have been trying to determine precisely how many neutrinos are emitted as a result of this reaction in the lab, so as to compare them with the number that actually reach Earth as measured by SNO, Kamiokande and Homestake.
However, mostly due to difficulties with the preparation and homogeneity of a central component in the reaction (the target made of the radioactive isotope of mass 7 of the beryllium element), large discrepancies persisted. The present experiment, conducted by Prof. Michael Hass of the Weizmann Institutes Particle Physics Department, uses in a novel way a 2 mm diameter target of the beryllium 7 nuclei, prepared at the ISOLDE (CERN) laboratory and brought to the Van de Graaff accelerator of the Weizmann Institute, Israel, for the measurement of the reaction. The results of this measurement, with less than a 4% margin of error, may draw to a close this reactions standing as the largest source of error in the Standard Solar Model estimates of the measured neutrino flux.
Media Contact
More Information:
http://www.weizmann.ac.il/All latest news from the category: Physics and Astronomy
This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.
innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.
Newest articles
First-of-its-kind study uses remote sensing to monitor plastic debris in rivers and lakes
Remote sensing creates a cost-effective solution to monitoring plastic pollution. A first-of-its-kind study from researchers at the University of Minnesota Twin Cities shows how remote sensing can help monitor and…
Laser-based artificial neuron mimics nerve cell functions at lightning speed
With a processing speed a billion times faster than nature, chip-based laser neuron could help advance AI tasks such as pattern recognition and sequence prediction. Researchers have developed a laser-based…
Optimising the processing of plastic waste
Just one look in the yellow bin reveals a colourful jumble of different types of plastic. However, the purer and more uniform plastic waste is, the easier it is to…